• Title/Summary/Keyword: mutations in the regulatory region

Search Result 17, Processing Time 0.021 seconds

Sturcture of the Rice Glutelin Multigene Family and Its Expression (쌀 Glutelin 유전자군의 구조 및 발현조절)

  • 황영수
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.261-282
    • /
    • 1987
  • Plants store a significant amount of their nitrogen, sulfur and carbon reserves as storage proteins in seed tissues. The major proteins present in rice seeds are the glutelins. Glutelins are initially synthesized at 4-6 days postanthesis and deposited into protein bodies via Golgi apparatus. Based on nucleic acid sequences and Southern blot analysis, the three isolated glutelin genomic clones were representative members of three gene subfamilies each containing 5 to 8 copies. A comparison of DNA sequences displayed by relevant regions of these genomic clones showed that two subfamilies, represented by clones, Gt1 and Gt2, were closely, related and probably evolved by more recent gene duplication events. The 5' flanking and coding sequences of Gt1 and Gt2 displayed at least 87% homolgy. In contrast, Gt3 showed little or no homolgy in the 5' flanking sequences upstream of the putative CAAT boxes and exhibited significant divergence in all other portions of the gene. Conserved sequences in the 5' flanking regions of these genes were identified and discussed in light of their potential regulatory role. The derived primary sequences of all three glutelin genomic clones showed significant homology to the legume 11S storage proteins indicating a common gene origin. A comparison of the derived glutelin primary sequences showed that mutations were clustered in three peptide regions. One peptide region corresponded to the highly rautable hypervariable region of legume peptide region of legume 11S storage proteins, a potential target area for protein modification. Expression studies indicated that glutelin mRNA transcripts are differentially accumulated during endosperm development. Promoterss of Gt2 and Gt3 were functional as they direct transient expression of chloramphenicol acetyltransferase in cultured plant cell.

  • PDF

Associations between Single Nucleotide Polymorphisms of COX-2 and MMP-2 Genes and Colorectal Cancer Susceptibility in the Saudi Population

  • Shalaby, Manal Ali;Nounou, Howaida Attia;Alanazi, Mohammad Saud;Alharby, Othman;Azzam, Nahla;Saeed, Hesham Mahmoud
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.12
    • /
    • pp.4989-4994
    • /
    • 2014
  • Background: It has been reported that COX-2 expression is associated with MMP-2 expression in thyroid and breast cancers, suggesting that MMPs are linked to COX-2-mediated carcinogenesis. Several polymorphisms within the MMP2 promoter region have been reported in cases with oncogenesis and tumor progression, especially in colorectal carcinogenesis. Materials and Methods: This research evaluated risk of association of the SNPs, including genes for COX-2 (AIG transition at +202) and MMP-2 (Crr transition at-1306), with colorectal cancer in 125 patients and 125 healthy controls. Results and Conclusions: Our data confirmed that MMP2 C-1306 T mutations were significantly more common in colon cancer patients than in our control Saudi population; p=O.0121. On the other hand in our study, there was no significant association between genotype distribution ofthe COX2 polymorphism and colorectal cancer; p=0.847. An elevated frequency ofthe mutated genotype in the control group as compared to the patients subjects indeed suggested that this polymorphism could decrease risk in the Saudi population. Our study confirmed that the polymorphisms that could affect the expressions of MMP-2 and COX-2 the colon cancer patients were significantly higher than that in the COX-2 negative group. The frequency of individuals with MMP2 polymorphisms in colon cancer patients was higher than individuals with combination of COX2 and MMP2 polymorphisms. Our study confirmed that individuals who carried the polymorphisms that could affect the expressions ofCOX2 are more susceptible to colon cancer. MMP2 regulatory polymorphisms could be considered as protective; further studies need to confirm the results with more samples and healthy subjects.

Effect on the Inhibition of DNA-PK in Breast Cancer Cell lines(MDA-465 and MDA-468) with DNA-PKcs Binding Domain Synthetic Peptide of Ku80 (Ku80의 DNA-PKcs 결합부위 합성 Peptide 투여에 의한 유방암세포의 DNA-dependent protein kinase 억제 효과)

  • 김충희;김태숙;문양수;정장용;강정부;김종수;강명곤;박희성
    • Journal of Veterinary Clinics
    • /
    • v.21 no.3
    • /
    • pp.253-258
    • /
    • 2004
  • DNA double-strand break (DSB) is a serious treat for the cells including mutations, chromosome rearrangements, and even cell death if not repaired or misrepaired. Ku heterodimer regulatory DNA binding subunits (Ku70/Ku80) bound to double strand DNA breaks are able to interact with 470-kDa DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and the interaction is essential for DNA-dependent protein kinase (DNA-PK) activity. The Ku80 mutants were designed to bind Ku70 but not DNA end binding activity and the peptides were treated in breast cancer cells for co-therapy strategy to see whether the targeted inhibition of DNA-dependent protein kinase (DNA-PK) activity sensitized breast cancer cells to ionizing irradiation or chemotherapy drug to develop a treatment of breast tumors by targeting proteins involved in damage-signaling pathway and/or DNA repair. We designed domains of Ku80 mutants, 26 residues of amino acids (HN-26) as a control peptide or 38 (HNI-38) residues of amino acids which contain domains of the membrane-translocation hydrophobic signal sequence and the nuclear localization sequence, but HNI-38 has additional twelve residues of peptide inhibitor region. We observed that the synthesized peptide (HNI-38) prevented DNA-PKcs from binding to Ku70/Ku80, resulting in inactivation of DNA-PK complex activity in breast cancer cells (MDA-465 and MDA-468). Consequently, the peptide treated cells exhibited poor to no DNA repair, and became highly sensitive to irradiation or chemotherapy drugs. The growth of breast cancer cells was also inhibited. These results demonstrate the possibility of synthetic peptide to apply breast cancer therapy to induce apoptosis of cancer cells.

A Novel PHKA1 Mutation in a Patient with Glycogen Storage Disease Type IXD (당원 축적병 9D (GSD9D) 환자의 신규 PHKA1 돌연변이)

  • Kim, Hye Jin;Nam, Soo Hyun;Kim, Sang Beom;Chung, Ki Wha;Choi, Byung-Ok
    • Journal of Life Science
    • /
    • v.30 no.8
    • /
    • pp.672-679
    • /
    • 2020
  • Distal myopathy is a clinically and genetically heterogeneous group of degenerative diseases of the distal muscle. Glycogen storage disease type IXD (GSD9D) is a metabolic distal myopathy characterized by muscle deficiency of phosphorylase kinase, a key regulatory enzyme in glycogen metabolism. Affected individuals may develop muscle weakness, degeneration, and cramps, as well as abnormal muscle pain and stiffness after exercise. It has been reported that mutations in the PHKA1 gene which encodes the alpha subunit of muscle phosphorylase kinase cause GSD9D. In this study, we examined a Korean GSD9D family with a c.3314T>C (p.I1105T) mutation in the PHKA1 gene. This mutation has not been previously reported in any mutation database nor was it found in 500 healthy controls. The mutation region is well conserved in various other species, and in silico analysis predicts that it is likely to be pathogenic. To date, only seven mutations in the PHKA1 gene have been documented, and this is the first report of Korean GSD9D patients. This study also describes and compares the clinical symptoms and pathological conditions of previously reported cases and these Korean patients. We believe that our findings will be useful for the molecular diagnosis of GSD9D.

Identification of Amino Acids Involved in the Sensory Function of the PrrB Histidine Kinase by Site-directed Mutagenesis (Site-directed mutagenesis에 의한 PrrB histidine kinase의 신호인지 기능에 관련된 아미노산의 발굴)

  • Kim Yong-Jin;Ko In-Jeong;Oh Jeong-Il
    • Journal of Life Science
    • /
    • v.16 no.3 s.76
    • /
    • pp.485-492
    • /
    • 2006
  • The PrrBA two-component system is one of the major regulatory systems that control expression of photosynthesis genes in response to changes in oxygen tension in the anoxygenic photosynthetic bacterium, Rhodobacter sphaeroides. The system consists of the PrrB histidine kinase and the PrrA response regulator. The N-terminal transmembrane domain of PrrB serves as a signal-sensing domain and comprises six transmembrane helices forming three periplasmic loops and two cytoplasmic loops. The $3^{rd}$ and $4^{th}$ transmembrane helices and the $2^{nd}$ periplasmic loop were suggested to play a crucial role in redox-sensory function. In this study we demonstrated that mutations of Asp-90, Gln-93, Leu-94, Leu-98, and Asn-106 in the $2^{nd}$ periplasmic loop and its neighboring region led to severe defects in PrrB sensory function, indicating that these amino acids might be related to the redox-sensing function of PrrB. The mutant forms (D90E, D90N, and D90A) of PrrB were heterologously overexpressed in Escherichia coli, purified by means of affinity chromatography and their autokinase activities were comparatively assessed. The D90N form of PrrB was shown to possess higher autokinase activity than the wild-type form of PrrB, whereas the D90E form of PrrB displayed lower autokinase activity than the wild-type form of PrrB. The D90A mutation led to the loss of PrrB autokinase activity.

($P16^{ink4}$ Methylation in Squamous Cell Carcinoma of the Oral Cavity. (구강 편평세포암종에서 $P16^{ink4}$ 유전자의 Methylation에 대한 연구)

  • Kang, Gin-Won;Kim, Kyung-Wook;Lyu, Jin-Woo;Kim, Chang-Jin
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.22 no.2
    • /
    • pp.164-173
    • /
    • 2000
  • The p16 protein is a cyclin dependent kinase inhibitor that inhibits cell cycle progression from $G_1$ phase to S phase in cell cycle. Many p16 gene mutations have been noted in many cancer-cell lines and in some primary cancers, and alterations of p16 gene function by DNA methylation have been noticed in various kinds of cancer tissues and cell-lines. There have been a large body of literature has accumulated indicating that abnormal patterns of DNA methylation (both hypomethylation and hypermethylation) occur in a wide variety of human neoplasma and that these aberrations of DNA methylation may play an important epigenetic role in the development and progression of neoplasia. DNA methylation is a part of the inheritable epigenetic system that influences expression or silencing of genes necessary for normal differentiation and proliferation. Gene activity may be silenced by methylation of up steream regulatory regions. Reactivation is associated with demethylation. Although evidence or a high incidence of p16 alterations in a variety of cell lines and primary tumors has been reported, that has been contested by other investigators. The precise mechanisms by which abnormal methylation might contribute to carcinogenesis are still not fully elucidated, but conceivably could involve the modulation of oncogene and other important regulatory gene expression, in addition to creating areas of genetic instability, thus predisposing to mutational events causing neoplasia. There have been many variable results of studies of head and neck squamous cell carcinoma(HNSCC). This investigation was studied on 13 primary HNSCC for p16 gene status by protein expression in immunohistochemistry, and DNA genetic/epigenetic analyzed to determine the incidence, the mechanisms, and the potential biological significance of its Inactivation. As methylation detection method of p16 gene, the methylation specific PCR(MSP) is sensitive and specific for methylation of any block of CpG sites in a CpG islands using bisulfite-modified DNA. The genomic DNA is modified by treatment with sodium bisulfate, which converts all unmethylated cytosines to uracil(thymidine). The primers designed for MSP were chosen for regions containing frequent cytosines (to distinguish unmodified from modified DNA), and CpG pairs near the 5' end of the primers (to provide maximal discrimination in the PCR between methylated and unmethylated DNA). The two strands of DNA are no longer complementary after bisulfite treatment, primers can be designed for either modified strand. In this study, 13 paraffin embedded block tissues were used, so the fragment of DNA to be amplified was intentionally small, to allow the assessment of methylation pattern in a limited region and to facilitate the application of this technique to samlples. In this 13 primary HNSCC tissues, there was no methylation of p16 promoter gene (detected by MSP and automatic sequencing). The p16 protein-specific immunohistochemical staining was performed on 13 paraffin embedded primary HNSCC tissue samples. Twelve cases among the 13 showed altered expression of p16 proteins (negative expression). In this study, The author suggested that low expression of p16 protein may play an important role in human HNSCC, and this study suggested that many kinds of genetic mechanisms including DNA methylation may play the role in carcinogenesis.

  • PDF

Discovery of UBE2I as a Novel Binding Protein of a Premature Ovarian Failure-Related Protein, FOXL2 (조기 난소 부전증 유발 관련 단백질인 FOXL2의 새로운 결합 단백질 UBE2I의 발견)

  • Park, Mira;Jung, Hyun Sook;Kim, Hyun-Lee;Pisarska, Margareta D.;Ha, Hye-Jeong;Lee, Kangseok;Bae, Jeehyeon;Ko, Jeong-Jae
    • Development and Reproduction
    • /
    • v.12 no.3
    • /
    • pp.289-296
    • /
    • 2008
  • BPES (Blepharophimosis/Ptosis/Epicanthus inversus Syndrome) is an autosomal dominant disorder caused by mutations in FOXL2. Affected individuals have premature ovarian failure (POF) in addition to small palpebral fissures, drooping eyelids, and broad nasal bridge. FOXL2 is a member of the forkhead family transcription factors. In FOXL2-deficient ovaries, granulosa cell differentiation dose not progress, leading to arrest of folliculogenesis and oocytes atresia. Using yeast two-hybrid screening of rat ovarian cDNA library with FOXL2 as bait, we found that small ubiquitin-related modifier (SUMO)-conjugating E2 enzyme UBE2I protein interacted with FOXL2 protein. UBE2I also known as UBC9 is an essential protein for processing SUMO modification. Sumoylation is a form of post-translational modification involved in diverse signaling pathways including the regulation of transcriptional activities of many transcriptional factors. In the present study, we confirmed the protein-protein interaction between FOXL2 and UBE2I in human cells, 293T, by in vivo immunoprecipitation. In addition, we generated truncated FOXL2 mutants and identified the region of FOXL2 required for its association with UBE2I using yeast-two hybrid system. Therefore, the identification of UBE2I as an interacting protein of FOXL2 further suggests a presence of novel regulatory mechanism of FOXL2 by sumoylation.

  • PDF