• Title/Summary/Keyword: mutational analysis

검색결과 127건 처리시간 0.031초

Phenotypic and Molecular Characteristics of Children with Progressive Familial Intrahepatic Cholestasis in South China

  • Zhang, Wen;Lin, Ruizhu;Lu, Zhikun;Sheng, Huiying;Xu, Yi;Li, Xiuzhen;Cheng, Jing;Cai, Yanna;Mao, Xiaojian;Liu, Li
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제23권6호
    • /
    • pp.558-566
    • /
    • 2020
  • Purpose: Progressive familial intrahepatic cholestasis (PFIC) is a rare genetic autosomal recessive disease caused by mutations in ATP8B1, ABCB11 or ABCB4. Mutational analysis of these genes is a reliable approach to identify the disorder. Methods: We collected and analyzed relevant data related to clinical diagnosis, biological investigation, and molecular determination in nine children carrying these gene mutations, who were from unrelated families in South China. Results: Of the nine patients (five males, four females) with PFIC, one case of PFIC1, four cases of PFIC2, and four cases of PFIC3 were diagnosed. Except in patient no. 8, jaundice and severe pruritus were the major clinical signs in all forms. γ-glutamyl transpeptidase was low in patients with PFIC1/PFIC2, and remained mildly elevated in patients with PFIC3. We identified 15 different mutations, including nine novel mutations (p.R470HfsX8, p.Q794X and p.I1170T of ABCB11 gene mutations, p.G319R, p.A1047P, p.G1074R, p.T830NfsX11, p.A1047PfsX8 and p.N1048TfsX of ABCB4 gene mutations) and six known mutations (p.G446R and p.F529del of ATP8B1 gene mutations, p.A588V, p.G1004D and p.R1057X of ABCB11 gene mutations, p.P479L of ABCB4 gene mutations). The results showed that compared with other regions, these three types of PFIC genes had different mutational spectrum in China. Conclusion: The study expands the genotypic spectrum of PFIC. We identified nine novel mutations of PFIC and our findings could help in the diagnosis and treatment of this disease.

The Optimal Tumor Mutational Burden Cutoff Value as a Novel Marker for Predicting the Efficacy of Programmed Cell Death-1 Checkpoint Inhibitors in Advanced Gastric Cancer

  • Jae Yeon Jang;Youngkyung Jeon ;Sun Young Jeong ;Sung Hee Lim ;Won Ki Kang;Jeeyun Lee ;Seung Tae Kim
    • Journal of Gastric Cancer
    • /
    • 제23권3호
    • /
    • pp.476-486
    • /
    • 2023
  • Purpose: The optimal tumor mutational burden (TMB) value for predicting treatment response to programmed cell death-1 (PD-1) checkpoint inhibitors in advanced gastric cancer (AGC) remains unclear. We aimed to investigate the optimal TMB cutoff value that could predict the efficacy of PD-1 checkpoint inhibitors in AGC. Materials and Methods: Patients with AGC who received pembrolizumab or nivolumab between October 1, 2020, and July 27, 2021, at Samsung Medical Center in Korea were retrospectively analyzed. The TMB levels were measured using a next-generation sequencing assay. Based on receiver operating characteristic curve analysis, the TMB cutoff value was determined. Results: A total 53 patients were analyzed. The TMB cutoff value for predicting the overall response rate (ORR) to PD-1 checkpoint inhibitors was defined as 13.31 mutations per megabase (mt/Mb) with 56% sensitivity and 95% specificity. Based on this definition, 7 (13.2%) patients were TMB-high (TMB-H). The ORR differed between the TMB-low (TMB-L) and TMB-H (8.7% vs. 71.4%, P=0.001). The progression-free survival and overall survival (OS) for 53 patients were 1.93 (95% confidence interval [CI], 1.600-2.268) and 4.26 months (95% CI, 2.992-5.532). The median OS was longer in the TMB-H (20.8 months; 95% CI, 2.292-39.281) than in the TMB-L (3.31 months; 95% CI, 1.604-5.019; P=0.049). Conclusions: The TMB cutoff value for predicting treatment response in AGC patients who received PD-1 checkpoint inhibitor monotherapy as salvage treatment was 13.31 mt/Mb. When applying the programmed death ligand-1 status to TMB-H, patients who would benefit from PD-1 checkpoint inhibitors can be selected.

Characterization of Osh3, an Oxysterol-binding Protein, in Filamentous Growth of Saccharomyces cerevisiae and Candida albicans

  • Hur, Hyang-Sook;Ryu, Ji-Ho;Kim, Kwang-Hoon;Kim, Jin-Mi
    • Journal of Microbiology
    • /
    • 제44권5호
    • /
    • pp.523-529
    • /
    • 2006
  • OSH3 is one of the seven yeast homologues of the oxysterol binding proteins (OSBPs) which have the major binding affinity to the oxysterols and function as regulator of cholesterol biosynthesis in mammals. Mutational analysis of OSH3 showed that OSH3 plays a regulatory role in the yeast-to-hyphal transition through its oxysterol-binding domain in Saccharomyces cerevisiae. The OSH3 gene was also identified in the pathogenic yeast Candida albicans. Deletion of OSH3 caused a defect in the filamentous growth, which is the major cause of the C. albicans pathogencity. The filamentation defect of the mutation in the MAPK-associated transcription factor, namely $cph1{\Delta}$ was suppressed by overexpression of OSH3. These findings suggest the regulatory roles of OSH3 in the yeast filamentous growth and the functional conservations of OSH3 in S. cerevisiae and C. albicans.

Cloning and mutational analysis of pyrroquinoline quinone(PQQ) genes from a phosphate - solubilizing biocontrol bacterium Enterobacter intermedium.

  • Han, Song-Hee;Cho, Baik-Ho;Kim, Young-Cheol
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.94.2-95
    • /
    • 2003
  • E. intermedium 60-2G possessing a strong ability to solubilize insoluble phosphate, has plant growth-promoting activity, induced systemic resistance activity against scab pathogen in cucumber, and antifungal activity against various phytopathogenic fungi. The phosphate solubilizing activity of 60-2G may be mainly accomplished by production of gluconic acid through a direct extracellular oxidation of glucose by glucose dehydrogenase that required a PQQ cofactor for its activation. A pqq gene cluster conferred Phosphate-solubilizing activity in E. coli DH5${\alpha}$ was cloned and sequenced. The 6,783 bP pqq sequence had six open reading frames (from A to F) and showed 50-95% homology to pqq genes from other bacteria. The E. coli strain expressing the pqq genes solubilized phosphate from hydroxyapatite after a pH drop to 4.0, which paralleled in time the secretion of gluconic acid. To study the role of PQQ in biocontrol traits of E. intermedium, PQQ mutants of 60-2G were constructed by marker exchangee mutagenesis. The PQQ mutants of E. intermedium were lost activities of solubilizing phosphate, growth inhibition of phytopathogenic fungi, and plant growth promotion. These findings suggest that PQQ plays an important role, possibly activation of certain enzymes, in several beneficial bacterial traits of E. intermedium by as yet an unknown mechanism.

  • PDF

Familial hyperkalemic periodic paralysis caused by a de novo mutation in the sodium channel gene SCN4A

  • Han, Ji-Yeon;Kim, June-Bum
    • Clinical and Experimental Pediatrics
    • /
    • 제54권11호
    • /
    • pp.470-472
    • /
    • 2011
  • Familial hyperkalemic periodic paralysis (HYPP) is an autosomal-dominant channelopathy characterized by transient and recurrent episodes of paralysis with concomitant hyperkalemia. Mutations in the skeletal muscle voltage-gated sodium channel gene $SCN4A$ have been reported to be responsible for this disease. Here, we report the case of a 16-year-old girl with HYPP whose mutational analysis revealed a heterozygous c.2111C>T substitution in the $SCN4A$ gene leading to a Thr704Met mutation in the protein sequence. The parents were clinically unaffected and did not have a mutation in the $SCN4A$ gene. A $de$ $novo$ $SCN4A$ mutation for familial HYPP has not previously been reported. The patient did not respond to acetazolamide, but showed a marked improvement in paralytic symptoms upon treatment with hydrochlorothiazide. The findings in this case indicate that a $de$ $novo$ mutation needs to be considered when an isolated family member is found to have a HYPP phenotype.

Transient neonatal diabetes mellitus caused by a de novo ABCC8 gene mutation

  • Kong, Jung-Hyun;Kim, June-Bum
    • Clinical and Experimental Pediatrics
    • /
    • 제54권4호
    • /
    • pp.179-182
    • /
    • 2011
  • Transient neonatal diabetes mellitus (TNDM) is a rare form of diabetes mellitus that presents within the first 6 months of life with remission in infancy or early childhood. TNDM is mainly caused by anomalies in the imprinted region on chromosome 6q24; however, recently, mutations in the ABCC8 gene, which encodes sulfonylurea receptor 1 (SUR1), have also been implicated in TNDM. Herein, we present the case of a male child with TNDM whose mutational analysis revealed a heterozygous c.3547C>T substitution in the ABCC8 gene, leading to an Arg1183Trp mutation in the SUR1 protein. The parents were clinically unaffected and did not show a mutation in the ABCC8 gene. This is the first case of a de novo ABCC8 gene mutation in a Korean patient with TNDM. The patient was initially treated with insulin and successfully switched to sulfonylurea therapy at 14 months of age. Remission of diabetes had occurred at the age of 16 months. Currently, the patient is 21 months old and is euglycemic without any insulin or oral hypoglycemic agents. His growth and physical development are normal, and there are no delays in achieving neurological and developmental milestones.

Cyclic AMP response element binding (CREB) protein acts as a positive regulator of SOX3 gene expression in NT2/D1 cells

  • Kovacevic-Grujicic, Natasa;Mojsin, Marija;Popovic, Jelena;Petrovic, Isidora;Topalovic, Vladanka;Stevanovic, Milena
    • BMB Reports
    • /
    • 제47권4호
    • /
    • pp.197-202
    • /
    • 2014
  • SOX3 is one of the earliest neural markers in vertebrates, playing the role in specifying neuronal fate. In this study we have established first functional link between CREB and human SOX3 gene which both have important roles in the nervous system throughout development and in the adulthood. Here we demonstrate both in vitro and in vivo that CREB binds to CRE half-site located -195 to -191 within the human SOX3 promoter. Overexpression studies with CREB or its dominant-negative inhibitor A-CREB indicate that this transcription factor acts as a positive regulator of basal SOX3 gene expression in NT2/D1 cells. This is further confirmed by mutational analysis where mutation of CREB binding site results in reduction of SOX3 promoter activity. Our results point at CREB as a positive regulator of SOX3 gene transcription in NT2/D1 cells, while its contribution to RA induction of SOX3 promoter is not prominent.

Mutational Analysis of Two Conserved Active Site Tyrosine Residues in Matrilysin

  • Jaeho Cha
    • Journal of Life Science
    • /
    • 제9권2호
    • /
    • pp.44-48
    • /
    • 1999
  • The ionization of tyrosine residue is known to be involved in the stabilization of transition-state in catalysis of astacin based upon the astacin-transition state analog structure. Two tyrosine residues, Tyr-216 and Tyr-219, are conserved in all MMPs related with astacin family, We replaced Tyr-216 and Tyr-219 into phenylalanine, respectively and the zinc binding properties, kinetic parameters, and pH dependence of each mutant are determined in order to examine the role of tyrosine residue in matrilysin catalysis. Both mutants contain two zinc atoms per mol of enzyme, indicating that either tyrosime does not affect the zinc binding property of the enzyme. Y216F and Y219F mutants are highly active and the kcat/Km values are only decreased 1.1-1.5-fold compared to the wild-type enzyme. The decrease in the activity of the mutants is essentially due to the increase in Km value. The pH dependencies of the kcat/Km values for both mutants are similar to the corresponding dependencies obtained with the wild type enzyme. The pKa values at the alkaline side of both mutants are not changed. These kinetic and pH dependence results indicate that the ionization of active site tyrosine residue of matrilysin is not reflected in the kinetics of peptide hydrolysin as catalyzed by astacin.

Mutational Analysis of the MTHFR Gene in Breast Cancer Patients of Pakistani Population

  • Akram, Muhammad;Malik, Fa;Kayani, Mahmood Akhtar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권4호
    • /
    • pp.1599-1603
    • /
    • 2012
  • Objectives: Since methylenetetrahydrofolate reductase (MTHFR) maintains the balance of circulating folate and methionine and blocks the formation of homocysteine, its regulation in relation to different cancers has extensively been studied in different populations. However, information on Pakistani breast cancer patients is lacking. The MTHFR gene has two most common mutations that are single nucleotide additions which result in change of amino acids C677T to Ala222val and A1298C to Glu429Ala. Methodology: 110 sporadic breast patients with no prior family history of cancer or any other type of genetic disorders along with 110 normal individuals were screened for mutations in exons 1 to exon 9 using single strand conformational polymorphism, RFLP and sequencing analyzer. Results: The p values for the 677CC, 677CT, and 677TT genotypes were 0.223, 0.006, and 0.077, respectively. Those for the 1298AA, 1298AC, and 1298CC genotypes were 0.555, 0.009, and 0.003, respectively. Conclusions: We found an overall a significant, weak inverse association between breast cancer risk and the 677TT genotype and an inverse association with the 1298C variant. These results for MTHFR polymorphism might be population specific in sporadic breast cancer affected patients but many other factors need to be excluded before making final conclusions including folate intake, population and disease heterogeneity.

Translocation of VP1686 Upregulates RhoB and Accelerates Phagocytic Activity of Macrophage Through Actin Remodeling

  • Bhattacharjee, Rabindra N.;Park, Kwon-Sam;Chen, Xiuhao;Iida, Tetsuya;Honda, Takeshi;Takeuchi, Osamu;Akira, Shizuo
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.171-175
    • /
    • 2008
  • Here, we report that Vibrio parahaemolyticus induces a rapid remodeling of macrophage actin and activates RhoB GTPase. Mutational analysis revealed that the effects depend on type III secretion system 1 regulated translocation of a V. parahaemolyticus effector protein, VP1686, into the macrophages. Remodeling of actin is shown to be necessary for increased bacterial uptake followed by initiation of apoptosis in macrophages. This provides evidence for functional association of the VP1686 in triggering an eat me-and-die signal to the host.