• 제목/요약/키워드: mutant virus

검색결과 98건 처리시간 0.019초

Use of ALLGIO Probe Assays for Detection of HBV Resistance to Adefovir in Patients with Chronic Hepatitis B, Kerman, Iran

  • Afshar, Reza Malekpour;Mollaie, Hamid Reza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5463-5467
    • /
    • 2012
  • Hepatitis B virus (HBV) infection is contagious with transmissiobn vertically or horizontally by blood products and body secretions. Over 50% of Iranian carriers contracted the infection prenatally, making this the most likely route of transmission of HBV in Iran. To evaluate the resistance to adefovir (ADV) therapy in patients with chronic hepatitis B infection, a study was conducted on 70 patients (63 males and 7 females), who had received in first line lamivudine and second line adefovir. All were tested for the presence of hepatitis B surface antigen (HBsAg), hepatitis B envelope antigen (HBeAg), serum alanine amino transferase (ALT) level and HBV DNA load before and after treatment with ADV. In all samples, resistance to lamivudine and ADV was tested with real time PCR. Among seventy patients with chronic hepatitis B infection, 18 (25.7%) were resistant to LAM and 8 (11.4%) were resistant to ADV. Only one patient was negative for the presence of HBS-Ag (5.6%) and two were negative for HBe-Ag (11.1%). In this study we used a new method (ALLGIO probe assay) that has high sensitivity in detection of adefovir resistance mutants, which we recommend to other researchers. Mutant strains of the YMDD motif of HBV polymerase can be found in some patients under treatment with lamivudine and ADV. ADV has been demonstrated to be efficient in patients with lamivudine resistant HBV.

v-Crk Induces Rac-dependent Membrane Ruffling and Cell Migration in CAS-deficient Embryonic Fibroblasts

  • Sung, Bong Hwan;Yeo, Myoung Gu;Oh, Hye Jin;Song, Woo Keun
    • Molecules and Cells
    • /
    • 제25권1호
    • /
    • pp.131-137
    • /
    • 2008
  • Crk-associated substrate (CAS) is a focal adhesion protein that is involved in integrin signaling and cell migration. CAS deficiency reduces the migration and spreading of cells, both of which are processes mediated by Rac activation. We examined the functions of v-Crk, the oncogene product of the CT10 virus p47gag-crk, which affects cell migration and spreading, membrane ruffling, and Rac activation in CAS-deficient mouse embryonic fibroblasts (CAS-/- MEFs). CAS-/- MEFs showed less spreading than did CAS+/+ MEFs, but spreading was recovered in mutant cells that expressed v-Crk (CAS-/-v-Crk MEF). We observed that the reduction in spreading was linked to the formation of membrane ruffles, which were accompanied by Rac activation. In CAS-/- MEFs, Rac activity was significantly reduced, and Rac was not localized to the membrane. In contrast, Rac was active and localized to the membrane in CAS-/-v-Crk MEFs. Lamellipodia protrusion and ruffle retraction velocities were both reduced in CAS-/- MEFs, but not in CAS-/-v-Crk MEFs. We also found that microinjection of anti-gag antibodies inhibited the migration of CAS-/-v-Crk MEFs. These findings indicate that v-Crk controls cell migration and membrane dynamics by activating Rac in CAS-deficient MEFs.

Expression of Bacillus subtilis proBA Genes and Reduction of Feedback Inhibition of Proline Synthesis Increases Proline Production and Confers Osmotolerance in Transgenic Arabidopsis

  • Chen, Mingqing;Wei, Hongbo;Cao, JunWei;Liu, Ruijie;Wang, Youliang;Zheng, Congyi
    • BMB Reports
    • /
    • 제40권3호
    • /
    • pp.396-403
    • /
    • 2007
  • Proline accumulation has been shown to correlate with tolerance to drought and salt stresses in plants. We attempt to introduce the wild-type, mutant, and fusion proBA genes derived from Bacillus subtilis into Arabidopsis thaliana under the control of a strong promoter cauliflower mosaic virus 35S (CaMV35S). The transgenic plants produced higher level of free proline than control and the overproduction of proline resulted in the increased tolerance to osmotic stress in transgenic plants. Besides, the mutation in proBA genes, which were proved to lead $\alpha$-glutamyl kinase ($\alpha$-GK) reduces sensitivity to the end-product inhibition and the fusion of proB and proA also result in increasing proline production and confer osmotolerance in transgenic lines.

누에 핵다각체병 바이러스의 Ecdysteroid UDP-glucosyltransferase 유전자가 누에의 발육에 미치는 영향 (Effect of the Ecdysteroid UDP-Glucosyltransferase Gene of the Bombyx mori Nucleopolyhedrovirus on the Development of the Silkworm, Bombyx mori)

  • 강경돈;이은정;;성수일
    • 한국잠사곤충학회지
    • /
    • 제40권2호
    • /
    • pp.105-110
    • /
    • 1998
  • The baculovirus egt gene encodes an ecdysteroid UDP-glucosyltransferase(EGT) which catalyzes the transfer of glucose from UDP-glucose to the insect moltion hormone ecdysteroid resulting in a functionally inactive ecdysteroid. In baculovirus-infected insect larvae, EGT has been shown block molting and pupation. In this study, we compared the development of 4th and 5th instar silkworm, Bombyx mori, larvae injected with either wild-type bombyx mori nucleopolyhedrovirus (BmNPV) or a mutant BmNPV(BmEGTZ) in which the egt gene was disrupted by the insertion of a lacZ gene cassette. Larvae injected with BmEGTZ died roughly 12 h more rapidly compared to indentical larvae infected with BmNPV. In addition, BmEGTZ- infected larvae prematurely stopped feeding and gain less weight compared to BmNPV-infected larvae. In order to investigate why BmEGTZ-infected larvae died more rapidly than BmNPV-infected larvae, the array of hemolymph proteins in BmEGTZ-or BmNPV-infected larvae were analyzed by SDS-PAGE. The hemolymph of BmEGTZ-infected larvae showed virus-specific proteins, including polyhedrin, about 12 h earlier than the hemolymph of BmNPV-infected larvae

  • PDF

Construction of tat-and nef-defective HIV-1 and screening of natural extracts with anti-HIV-1 activity

  • Lee, Ann-Hwee;Song, Man-Ki;Suh, Young-Ah;Sung, Young-Chul
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1995년도 춘계학술대회
    • /
    • pp.77-77
    • /
    • 1995
  • Human immunodeficiency virus type 1 (HIV-1) contains several nonstructural genes which are required for the viral replication and disease pathogenesis. Among them, tat and nef genes encode an essential transactivator of HIV-1 LTR and a pluripotent protein which seems to be essential for the in vivo but not in vitro viral replication, respectively. We constructed two tat and n of defective HIV-1 and tested for their ability to replicate in several T cells. The defective viruses did not replicate in CD4$\^$+/ T cells, but rescued in the recombinant Jurkat-tat cell which also contains tat gene. The replication of tat and nef defective HIV-1 which expresses chloramphenicol acetyltransferase(CAT) gene was easily detected by a sensitive CAT assay. No revertant was identified during the passages of the mutant viruses for more than two months in Jurkat-tat cells. tat and n of defective HIV-1 could be used instead of wild type viruse for several purposes such as inhibitor screening and development of attenuated AIDS vaccine.

  • PDF

Structural characterization of HBx-interacting protein using NMR spectroscopy

  • Lee Young-Tae;Kim Byoung-Kook;Kim Key-Sun;Choi Byong-Seok
    • 한국자기공명학회논문지
    • /
    • 제9권2호
    • /
    • pp.122-137
    • /
    • 2005
  • The hepatitis B virus X protein (HBx) is highly linked with liver diseases and the development of hepatocellular carcinoma. HBx-interacting protein (XIP) has been shown to abolish the transactivation functions of HBx. Here, we define the structural characteristics and HBx binding properties of XIP. Under physiological conditions, XIP was composed mainly of random-coils but significant helicity was induced in the hydrophobic condition. NMR spectroscopy defined the secondary structure of XIP in the presence of sodium dodecyl sulfate. Four putative helices were mapped to the amino acids 8-12, 32-38, 42-54 and 82-91. Any deletion of defined putative helices in XIP led to loss of binding to HBx, and truncated mutant lacking last putative helix decreased helicity more than that it could. Our results suggest that XIP requires its entire sequence for HBx binding and it may be under drastic conformational change when binds to HBx.

  • PDF

C-terminal truncated HBx reduces doxorubicin cytotoxicity via ABCB1 upregulation in Huh-7 hepatocellular carcinoma cells

  • Jegal, Myeong-Eun;Jung, Seung-Youn;Han, Yu-Seon;Kim, Yung-Jin
    • BMB Reports
    • /
    • 제52권5호
    • /
    • pp.330-335
    • /
    • 2019
  • Hepatitis B virus (HBV) encoding the HBV x protein (HBx) is a known causative agent of hepatocellular carcinoma (HCC). Its pathogenic activities in HCC include interference with several signaling pathways associated with cell proliferation and apoptosis. Mutant C-terminal-truncated HBx isoforms are frequently found in human HCC and have been shown to enhance proliferation and invasiveness leading to HCC malignancy. We investigated the molecular mechanism of the reduced doxorubicin cytotoxicity by C-terminal truncated HBx. Cells transfected with C-terminal truncated HBx exhibited reduced cytotoxicity to doxorubicin compared to those transfected with full-length HBx. The doxorubicin resistance of cells expressing C-terminal truncated HBx correlated with upregulation of the ATP binding cassette subfamily B member 1(ABCB1) transporter, resulting in the enhanced efflux of doxorubicin. Inhibiting the activity of ABCB1 and silencing ABCB1 expression by small interfering ribonucleic acid (siRNA) increased the cytotoxicity of doxorubicin. These results indicate that elevated ABCB1 expression induced by C-terminal truncation of HBx was responsible for doxorubicin resistance in HCC. Hence, co-treatment with an ABCB1 inhibitor and an anticancer agent may be effective for the treatment of patients with liver cancer containing the C-terminal truncated HBx.

방사선 치료에 내성이 유도된 두경부 편평세포암에 대한 종양살상 헤르페스 바이러스의 유전자 치료 효과 (Therapeutic Effect of Oncolytic Herpes Simplex Virus on Induced Radioresistant Head and Neck Squamous Cell Carcinoma)

  • 김세헌;최은창;이진석;천제영;변형권;송기재;김광문
    • 대한두경부종양학회지
    • /
    • 제22권2호
    • /
    • pp.130-136
    • /
    • 2006
  • Introduction : The sensitivity of tumor cells to radiotherapy is a critical determinant of local control and potential cure in advanced head and neck squamous cell carcinoma(HNSCC). The emergence of radioresistant tumor cells is an obstacle to cancer therapy. Most radioresistant cells have a higher proportion of cells in the Sphase of the cell cycle and a lower apoptotic fraction than radiosensitive cells. HSV replication is increased in cells that have higher S-phase fractions. NV1066 is an oncolytic herpes simplex virus type-1 mutant. We hypothesized that NV1066 replication and cytotoxicity are increased in radioresistant cells. The purpose of this study is to evaluate the antitumor efficacy of NV1066 to treat radioresistant HNSCC. Methods : Radioresistant cells were selected by treating five HNSCC cell lines with repeated conventional fractionated doses of radiation(2Gy/day), using a Cs-137 irradiator, up to a cumulative dose of 70Gy. Clonogenic cell survival and S-phase fractions were compared between radioresistant and parental radiosensitive cells. The two cell populations were then treated with NV1066 to examine viral replication, by the viral plaque assay and viral cytotoxicity. Results : Fractionated irradiation resulted in the selection of radioresistant cells. Radioresistant cells had a higher S-phase fraction(42.9%) compared to parental cells(26.2%). NV1066 replication in radioresistant cells was 7.4 times higher than in parental cells(p<0.01). Treatment with NV1066 resulted in increased cytotoxicity of 24.5% in radioresistant cells compared to parental cells(p<0.05). Conclusion : NV1066 showed increased viral replication and cytotoxicity in radioresistant HNSCC cell lines. These findings suggest a potential clinical application for this oncolytic viral therapy as treatment for radioresistant head and neck cancers.

Nonstructural NS5A Protein Regulates LIM and SH3 Domain Protein 1 to Promote Hepatitis C Virus Propagation

  • Choi, Jae-Woong;Kim, Jong-Wook;Nguyen, Lap P.;Nguyen, Huu C.;Park, Eun-Mee;Choi, Dong Hwa;Han, Kang Min;Kang, Sang Min;Tark, Dongseob;Lim, Yun-Sook;Hwang, Soon B.
    • Molecules and Cells
    • /
    • 제43권5호
    • /
    • pp.469-478
    • /
    • 2020
  • Hepatitis C virus (HCV) propagation is highly dependent on cellular proteins. To identify the host factors involved in HCV propagation, we previously performed protein microarray assays and identified the LIM and SH3 domain protein 1 (LASP-1) as an HCV NS5A-interacting partner. LASP-1 plays an important role in the regulation of cell proliferation, migration, and protein-protein interactions. Alteration of LASP-1 expression has been implicated in hepatocellular carcinoma. However, the functional involvement of LASP-1 in HCV propagation and HCV-induced pathogenesis has not been elucidated. Here, we first verified the protein interaction of NS5A and LASP-1 by both in vitro pulldown and coimmunoprecipitation assays. We further showed that NS5A and LASP-1 were colocalized in the cytoplasm of HCV infected cells. NS5A interacted with LASP-1 through the proline motif in domain I of NS5A and the tryptophan residue in the SH3 domain of LASP-1. Knockdown of LASP1 increased HCV replication in both HCV-infected cells and HCV subgenomic replicon cells. LASP-1 negatively regulated viral propagation and thereby overexpression of LASP-1 decreased HCV replication. Moreover, HCV propagation was decreased by wild-type LASP-1 but not by an NS5A binding-defective mutant of LASP-1. We further demonstrated that LASP-1 was involved in the replication stage of the HCV life cycle. Importantly, LASP-1 expression levels were increased in persistently infected cells with HCV. These data suggest that HCV modulates LASP-1 via NS5A in order to regulate virion levels and maintain a persistent infection.

Analysis of SARS-CoV-2 Mutations after Nirmatrelvir Treatment in a Lung Cancer Xenograft Mouse Model

  • Bo Min Kang;Dongbum Kim;Jinsoo Kim;Kyeongbin Baek;Sangkyu Park;Ha-Eun Shin;Myeong-Heon Lee;Minyoung Kim;Suyeon Kim;Younghee Lee;Hyung-Joo Kwon
    • Biomolecules & Therapeutics
    • /
    • 제32권4호
    • /
    • pp.481-491
    • /
    • 2024
  • Paxlovid is the first approved oral treatment for coronavirus disease 2019 and includes nirmatrelvir, a protease inhibitor targeting the main protease (Mpro) of SARS-CoV-2, as one of the key components. While some specific mutations emerged in Mpro were revealed to significantly reduce viral susceptibility to nirmatrelvir in vitro, there is no report regarding resistance to nirmatrelvir in patients and animal models for SARS-CoV-2 infection yet. We recently developed xenograft tumors derived from Calu-3 cells in immunodeficient mice and demonstrated extended replication of SARS-CoV-2 in the tumors. In this study, we investigated the effect of nirmatrelvir administration on SARS-CoV-2 replication. Treatment with nirmatrelvir after virus infection significantly reduced the replication of the parental SARS-CoV-2 and SARS-CoV-2 Omicron at 5 days post-infection (dpi). However, the virus titers were completely recovered at the time points of 15 and 30 dpi. The virus genomes in the tumors at 30 dpi were analyzed to investigate whether nirmatrelvir-resistant mutant viruses had emerged during the extended replication of SARS-CoV-2. Various mutations in several genes including ORF1ab, ORF3a, ORF7a, ORF7b, ORF8, and N occurred in the SARS-CoV-2 genome; however, no mutations were induced in the Mpro sequence by a single round of nirmatrelvir treatment, and none were observed even after two rounds of treatment. The parental SARS-CoV-2 and its sublineage isolates showed similar IC50 values of nirmatrelvir in Vero E6 cells. Therefore, it is probable that inducing viral resistance to nirmatrelvir in vivo is challenging differently from in vitro passage.