• 제목/요약/키워드: mutant mice

검색결과 152건 처리시간 0.023초

절식시킨 생쥐와 식욕부진 돌연변이 생쥐의 시상하부와 대뇌겉질에서 Neuropeptide Y와 NADPH-diaphorase의 이중면역조직화학법에 의한 발현 (Expression of Neuropeptide Y(NPY) and NADPH-diaphorase Neurons in the Hypothalamus and Cerebral Cortex of Fasting and Anorexia Mutant Mice(anx/anx).)

  • 김미자
    • Journal of Nutrition and Health
    • /
    • 제33권5호
    • /
    • pp.491-496
    • /
    • 2000
  • Food intake is regulated by both central and peripheral mechanisms. In the central nervous, the hypothalamus acts for autonomic and endocrine homeostasis. The paraventricular nucleus(PVN) of hypothalamus is an imprtant site of interaction in central feeding pathways. Neuroepetide Y(NPY)is one of the most powerful neurochemical stimulants of food intake known. Also brain nitric oxide(NO), known as neurotransmitter, is involved in the mechanisms that regulate food intake. In this experiment, 24h fasting mice and anorexia mutant mice have been to examine the expression of NPY, which is the major neuropeptide increasing food intake. Double staining with NPY and nicotinamide-adenine-dinucleotide-phosphate diaphorase(NADPH-d), followed by immunohistochemical method and image analysis, have been used to observe coexisting neurons and the level of expression of each neurons. The results were as follows. 1) NPY-immunoreactivitys reduced immune response of the hypothalamus, particularly paraventricular nucleus(PVN), in anorexia mutant mice. Decreased level of NPY is assumed to be a major pathological factor in anorexia mutant mice. On the other hand, PVN in hypothalamus of fasting mice showed increased immunoreactivity which is in agreement of other researchers. 2) NPY and NADPH-d double staining revealed coexisting neurons in the cerebral cortex. Fasting mice had a tendency to have increased level of coexisting neurons compared to the control group. Compared to the control group, fasting mice express is not increase level of NPY-immunoreactivity, while anorexia mutant mice tended to have a decreased level.

  • PDF

Positional cloning in mice: a new mutant mouse, Sims (Sexual Immaturity, Megaencephaly, and Seizure)

  • Koo, S.K.;Jin, S.J.;Lee, K.S.;Oh, B.S.
    • 한국동물학회:학술대회논문집
    • /
    • 한국동물학회 1999년도 한국생물과학협회 학술발표대회
    • /
    • pp.31-31
    • /
    • 1999
  • Characterization of mutant mice has been utilized as an animal model for the study of human inherited diseases. In addition to the pathogenesis stduy using the mutant mice, the mice have been used for the identification of the genes causing the phenotypes. Functional cloning and positional cloning are two approaches, depending on the phenotypes of the mutant mice. Though it takes a long time positional cloning has been well used to identify the gene of which function can not be presumed from the mouse phenotype. Recently by the advance of the molecular tools and the human genome project close to 10,000 genetic markers are developed to make the procedure faster. We obtained a new mutant mouse, sims, spontaneously arose and the affected mouse has a mild tremor and seizure was observed. Homozygote in either sex is sterile since uterus growth in female and seminal vesicle in male are not induced for the growth in puberty, implying the abnormal hormonal regulation during puberty. Supporting this, there is no detectable testosterone in the serum of the mutant male and the brain of the mutant is 30% heavier than littermate. To identify the location of the mutated gene, intraspecies cross to CAST/Ei was carried out and the 37 affected mice was analyzed for the linkage. The gene was mapped on chromosome 18, 20 cM from the centromere. More than 500 F2 progenies have been analyzed for the linkage and the locus becomes narrow within 3cM between Egrl and Fgf gene.f gene.

  • PDF

Mats1과 Mats2 이중결손 유전자 돌연변이에 의한 골감소증 기전에 대한 연구 (Osteoporotic bone phenotype in Mats1/2 double-mutant mice)

  • 오주환;최윤정;유미현;배문경;김형준
    • 대한구강악안면병리학회지
    • /
    • 제42권6호
    • /
    • pp.159-165
    • /
    • 2018
  • The Hippo pathway was originally discovered in Drosophila by genetic screening and it has been shown to be conserved in various organisms including human. Until now, the essential roles of Hippo pathway in regulating cell proliferation, apoptosis, tumorigenesis, and organ size control is extensively studied. Currently, Mats1/2 (Mob1a/1b), one of the important components in Hippo pathway, mutant mice were generated which has abnormal phenotype such as resistance to apoptosis and spontaneous tumorigenesis. Of note, Mats1/2 mutant mice also showed dental malocclusion. Therefore, in this study, we have evaluated the bone phenotype of Mats1/2 mutant mice. Although the mRNA expressions of Mats1 or Mats2 were observed in both osteoclastogenesis and osteoblastogenesis, the increase of Mats1 level was most prominent during osteoblastogenesis. The RANKL-induced osteoclast differentiation from bone marrow-derived macrophages (BMMs) was unaltered upon Mats1/2 mutation; however, the osteoblast differentiation using calvarial pre-osteoblasts was significantly reduced in Mats1/2 mutant mice compare to that of wild type mice. In accordance with in vitro results, Mats1/2 mutant mice showed decreased bone volume as well as increased trabecular separation in ${\mu}CT$ analyses. These results may provide novel prospect of the probable linkage between Hippo pathway and bone homeostasis.

Influence of Lead on Repetitive Behavior and Dopamine Metabolism in a Mouse Model of Iron Overload

  • Chang, JuOae;Kueon, Chojin;Kim, Jonghan
    • Toxicological Research
    • /
    • 제30권4호
    • /
    • pp.267-276
    • /
    • 2014
  • Exposures to lead (Pb) are associated with neurological problems including psychiatric disorders and impaired learning and memory. Pb can be absorbed by iron transporters, which are up-regulated in hereditary hemochromatosis, an iron overload disorder in which increased iron deposition in various parenchymal organs promote metal-induced oxidative damage. While dysfunction in HFE (High Fe) gene is the major cause of hemochromatosis, the transport and toxicity of Pb in Hfe-related hemochromatosis are largely unknown. To elucidate the relationship between HFE gene dysfunction and Pb absorption, H67D knock-in Hfe-mutant and wild-type mice were given drinking water containing Pb 1.6 mg/ml ad libitum for 6 weeks and examined for behavioral phenotypes using the nestlet-shredding and marble-burying tests. Latency to nestlet-shredding in Pb-treated wild-type mice was prolonged compared with non-exposed wild-types (p < 0.001), whereas Pb exposure did not alter shredding latency in Hfe-mutant mice. In the marble-burying test, Hfe-mutant mice showed an increased number of marbles buried compared with wild-type mice (p = 0.002), indicating more repetitive behavior upon Hfe mutation. Importantly, Pb-exposed wild-type mice buried more marbles than non-exposed wild-types, whereas the number of marbles buried by Hfe-mutant mice did not change whether or not exposed to Pb. These results suggest that Hfe mutation could normalize Pb-induced behavioral alteration. To explore the mechanism of repetitive behavior caused by Pb, western blot analysis was conducted for proteins involved in brain dopamine metabolism. The levels of tyrosine hydroxylase and dopamine transporter increased upon Pb exposure in both genotypes, whereas Hfe-mutant mice displayed down-regulation of the dopamine transporter and dopamine D1 receptor with D2 receptor elevated. Taken together, our data support the idea that both Pb exposure and Hfe mutation increase repetitive behavior in mice and further suggest that these behavioral changes could be associated with altered dopaminergic neurotransmission, providing a therapeutic basis for psychiatric disorders caused by Pb toxicity.

Decrease of c-Fos Expression in Hippocampus of Anorexia(anx/anx) Mice

  • Kim, Soon Ae;Choi, Young Mee;Park, Hi-Joon;Lee, Hyangsook;Han, Jin A;Kang, Soon Ah;Choue, Ryo Won;KimKwon, Yunhee;Kim, Chang-Ju;Chung, Joo-Ho
    • Animal cells and systems
    • /
    • 제5권2호
    • /
    • pp.157-161
    • /
    • 2001
  • Mice homozygous for the lethal autosomal recessive anorexia mutation (anx) present with premature death around postnatal day 22. The anorexia mutant mice also present phenotypes such as reduced body weight, decreased food intake, and abnormal behavior characteristics such as body tremors, hyperactivity, uncoordinated gait, and head weaving. In order to investigate the expression of c-Fos in the hippocampus of anorexia mutant mice, the immunohistochemistry was performed in this study. The anorexia mutant mice exhibited lower expression of c-Fos in the hippocampus regions thBn the control group. In the CA3 and dentate gyrus, the number of c-Fos-positive cells in anorexia mutant mice was noticeably lower than that in control mice. However, no significant difference was found in the number of c-Fos-positive cells in CA1 of the two groups. The result suggests that the phenotypic characteristics of anorexia mutant mice may be associated with the hippocampal deficits of c-Fos expression.

  • PDF

Carcinogenicity and mutagenicity of heterocyclic amines in transgenic models

  • Ryu D.Y.
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2000년도 국제심포지움 및 추계학술대회
    • /
    • pp.45-67
    • /
    • 2000
  • 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) is a mutagenic and carcinogenic heterocyclic amino found in cooked meat. The in vivo mutagenicity and hepatocarcinogenicity of MeIQx were examined in mice harboring the lacZ mutation reporter gene ($Muta^{TM}$ Mice) and bitransgenic mice over-expressing the c-myc oncogene. C57B1/$\lambda$lacZ and bitransgenic c-myc (albumin promoter)/$\lambda$lacZ mice were bred and weaned onto an AIN-76 based diet containing $0.06\%$ (w/w) MeIQx or onto control diet. After 30 weeks on diet, only male bitransgenic mice on MeIQx developed hepatocellular carcinoma ($100\%$ incidence) indicating that there was synergism between c-myc over-expression and MeIQx. By 40 weeks, hepatic tumor incidence was $100\%$ ($17\%$) and $44\%$ ($0\%$) in male c-myc/$\lambda$lacZ and C57B1/$\lambda$lacZ mice given MeIQx (or control) diet, respectively, indicating that either MeIQx or c-myc over-expression alone eventually induced hepatic tumors. At either time point, mutant frequency in the lacZ gene was at least 40-fold higher in MeIQx-treated mice than in control mice of either strain. These findings suggest that MeIQx-induced hepatocarcinogenesis is associated with MeIQx-induced mutations. Elevated mutant frequency in MeIQx-treated mice also occurred concomitant with the formation of MeIQx-guanine adducts as detected by the $^{32}P$-postlabeling assay. Irrespective of strain or diet, sequence analysis of the lacZ mutants from male mouse liver showed that the principal sequence alteration was a single guanine-base substitution. Adenine mutations, however, were detected only in animals on control diet. MeIQx-fed mice harboring the c-myc oncogene showed a l.4-2.6-fold higher mutant frequency in the lacZ gene than mice not carrying the transgene. Although there was a trend toward higher adduct levels in c-myc mice, MeIQx-DNA adduct levels were not significantly different between c-myc/$\lambda$lacZ and C57B1/$\lambda$lacZ mice after 30 weeks on diet. Thus, it appeared that factors in addition to MeIQx-DNA adduct levels, such as the enhance rate of proliferation associated with c-myc over-expression, may have accounted for a higher mutant frequency in c-myc mice. In the control diet groups, the lacZ mutant frequency was significantly higher in c-myc/$\lambda$lacZ mice than in 057B1/$\lambda$1acZ mice. The findings are consistent with the notion that c-myc over-expression is associated with an increase in mutagenesis. The mechanism for the synergistic effects of c-myc over-expression on MeIQx hepatocarcinogenicity appears to involve an enhancement of MeIQx-induced mutations.

  • PDF

절식시킨 생쥐와 식욕부진 돌연변이 생쥐의 시상하부와 해마에서의 Tryptophan Hydroxylase의 발현 (Expression of Tryptophan Hydroxylase in the Hypothalamus and Hippocampus of Fasting and Anorexia Mutant Mice)

  • 김미자;김영옥;정주호
    • Journal of Nutrition and Health
    • /
    • 제33권1호
    • /
    • pp.5-12
    • /
    • 2000
  • The control of food intake is a complex phenomenon caused by interactions between central and peripheral control mechanisms. The hypothalamic and brain stem regions have been identified as centers for food intake and energy expenditure in animals and humans. Of these, the ventromedial and lateral hypothalamic areas are involved in the control of food intake. Also, large amounts of neurotransmitters known to be involved in feeding are present in the hippocampus. Paricularly, tryptophan hydroxylase(TPH), known as a factor in the control of food intake, is present in high levels in the paraventricular nucleus of the hypothalamus and the hippocampus. In this study, TPH expression levels in the hypothalamic and hippocampal regions of fasting, anorexia mutant, and control mice were compared using RT-PCR and immunohistochemical methods. Differences in body weight among the fasting, anorexia mutant, and control groups wire observed. No statistical significance was noted in the number of TPH-immunoactivity in the hypothalamic nuclei, but relatively higher populations of such fibers were observed in the fasting group : the control group yielded samples with an overall value of 170.3${\pm}$3.5 in terms of immunoreactivity-induced optical density, whereas the fasting group yielded a value of 168.3${\pm}$2.6, and the anorexia mutant group 171.3${\pm}$0.8(lower values represent higher immunoreactivity), In fasting mice, stained neuronal bodies were observed in the CA3 and dentate gyrus regions of the hippocampus, which was different from the hippocampal regions of the control and anorexia mutant mice. The RT-PCR procedures were performed using whole brains, precluding any statistically noticeable findings in relation to specific regions, although the fasting and anorexia mutant groups showed 123.3% and 102.9%, respectively, of the TPH mRNA level in the control. The overall results present evidences of the role of TPH in the decrease in food intake during fasting caused by exogenic factors and in genetically acquired anorexia. (Korean J Nutrition 33(1) : 5-12, 2000)

  • PDF

Positional Cloning and Phenotypic Characterization of a New Mutant Mouse with Neuronal Migration Abnormality

  • Park, Chankyu;Ackerman, Susan-L
    • 한국발생생물학회:학술대회논문집
    • /
    • 한국발생생물학회 2001년도 발생공학 국제심포지움 및 학술대회 발표자료집
    • /
    • pp.14-17
    • /
    • 2001
  • Positional clonging (map-based cloning) of mutations or genetic variations has been served as an invaluable tool to understand in-vivo functions of genes and to identify molecular components underlying phenotypes of interest. Mice homozygous for the cerebellar deficient folia (cdf) mutation are ataxic, with cerebellar hypoplasia and abnormal lobulation of the cerebellum. In the cdf mutant cerebellum approximately 40% of Purkinje cells are ectopically located within the white matter and the inner granule cell layer (IGL). To identify the cdf gene, a high-resolution genetic map for the cdf-gene-encompassing region was constructed using 1997 F2 mice generated from C3H/HeSnJ-cdf/cdf and CAST/Ei intercross. The cdf gene showed complete linkage disequilibrium with three tightly linked markers D6Mit208, D6Mit359, and D6Mit225. A contig using YAC, BAC, and P1 clones was constructed for the cdf critical region to identify the gene. A deletion in the cdf critical region on chromosome 6 that removes approximately 150 kb of DNA selection. cdf mutant mice with the transgenic copy of the identified gene restored the brain abnormalities of the mutant mice. The positional cloning of cdf gene provides a good example showing the identification of a gene could lead to finding a new component of important molecular pathways.

  • PDF

Positional Cloning and Phenotypic Characterization of a New Mutant Mouse with Neuronal Migration Abnormality

  • Park, Chankyu;Ackerman, Susan-L
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2001년도 발생공학 국제심포지움 및 학술대회 발표자료집
    • /
    • pp.14-17
    • /
    • 2001
  • Positional cloning (map-based cloning) of mutations or genetic variations has been served as an invaluable tool to understand in-vivo functions of genes and to identify molecular components underlying phenotypes of interest. Mice homozygous for the cerebellar deficient folia (cdf) mutation are ataxic, with cerebellar hypoplasia and abnormal lobulation of the cerebellum. In the cdf mutant cerebellum approximately 40% of Purkinje cells are ectopically located within the white matter and the inner granule cell layer (IGL). To identify the cdf gene, a high-resolution genetic map for the cdf-gene-encompassing region was constructed using 1997 F2 mice generated from C3H/HeSnJ-cdf/cdf and CAST/Ei intercross. The cdf gene showed complete linkage disequilibrium with three tightly linked markers D6Mit208, D6Mit359, and D6Mit225. A contig using YAC, BAC, and P1 clones was constructed for the cdf critical region to identify the gene. A deletion in the cdf critical region on chromosome 6 that removes approximately 150kb of DNA was identified. A gene associated with this deletion was identified using cDNA selection. cdf mutant mice with the transgenic copy of the identified gene restored the brain abnormalities of the mutant mice. The positional cloning of cdf gene provides a good example showing the identification of a gene could lead to finding a new component of important molecular pathways.

  • PDF

Multi-Immunogenic Outer Membrane Vesicles Derived from a MsbB-Deficient Salmonella enterica Serovar Typhimurium Mutant

  • Lee, Sang-Rae;Kim, Sang-Hyun;Jeong, Kang-Jin;Kim, Keun-Su;Kim, Young-Hyun;Kim, Sung-Jin;Kim, E-Kyune;Kim, Jung-Woo;Chang, Kyu-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권10호
    • /
    • pp.1271-1279
    • /
    • 2009
  • To develop low endotoxic and multi-immunogenic outer membrane vesicles (OMVs), a deletion mutant of the msbB gene in Salmonella enterica serovar Typhimurium (S. Typhimurium) was used as a source of low endotoxic OMV, and an expression vector of the canine parvovirus (CPV) VP2 epitope fused to the bacterial OmpA protein was constructed and transformed into the Salmonella ${\Delta}msbB$ mutant. In a lethality test, BALB/c mice injected intraperitoneally with the Salmonella ${\Delta}msbB$ mutant survived for 7 days, whereas mice injected intraperitoneally with the wild type survived for 3 days. Moreover, all mice inoculated orally with the ${\Delta}msbB$ mutant survived for 30 days, but 80% of mice inoculated orally with the wild type survived. The OmpA::CPV VP2 epitope fusion protein was expressed successfully and associated with the outer membrane and OMV fractions from the mutant S. Typhimurium transformed with the fusion protein-expressing vector. In immunogenicity tests, sera obtained from the mice immunized with either the Salmonella msbB mutant or its OMVs containing the OmpA::CPV VP2 epitope showed bactericidal activities against wild-type S. Typhimurium and contained specific antibodies to the CPV VP2 epitope. In the hemagglutination inhibition (HI) assay as a measurement of CPV-neutralizing activity in the immune sera, there was an 8-fold increase of HI titer in the OMV-immunized group compared with the control. These results suggested that the CPV-neutralizing antibody response was raised by immunization with OMV containing the OmpA::CPV VP2 epitope, as well as the protective immune response against S. Typhimurium in BALB/c mice.