• 제목/요약/키워드: muscle differentiation

검색결과 289건 처리시간 0.027초

한우 Intramuscular Preadipocyte의 분화 (Differentiation of Hanwoo Intramuscular Preadipocytes)

  • 이상미;정영희;황성호;박효영;윤두학;문승주;정의룡;강만종
    • Journal of Animal Science and Technology
    • /
    • 제47권6호
    • /
    • pp.913-918
    • /
    • 2005
  • 가축에 있어서 marbling의 발달은 근육 내 지방세포의 크기 증가와 수에 밀접한 관계가 있다. 근육 내에 있는 지방전구세포는 marbling이 형성되는 동안 지방세포로 분화될 수 있는 능력을 가지고 있다. 본 연구에서는 한우 12개월령에서부터 intramuscular preadipocyte 세포를 분리하였으며 그 세포는 섬유아세포형태를 나타내었다. intramuscular preadipocyte 세포는 insulin, dexamethasone과 thiazolidinedione을 포함하는 지방분화 배지로 배양하면 지방세포로 분화되었다. 18일째 까지 지방분화를 유도하였을 때 triglyceride의 양은 대조구인 0일째보다 월등히 높았다. 그리고 thiazolidinedione을 처리하였을 때는 지방형성이 더 증가하는 경향을 나타내었다. 또한 지방분화에 있어서 PPARγ mRNA의 발현이 증가함을 RT-PCR로 확인하였다. 결론적으로 본 연구에서 지방분화에 사용된 배양 시스템은 intramuscular preadipocyte 세포를 지방세포로 분화를 유도하였으며 이들 세포는 한우에 있어서 지방분화 기능을 연구하는데 사용될 수 있을 것이다.

BMP4 처리에 의한 인간 배아줄기세포 유래 KDR 양성 중배엽성 세포군의 분화 양상 조사 (Identification and Characterization of a KDR-positive Mesoderm Population Derived from Human Embryonic Stem Cells Post BMP4 Treatment)

  • 김정모;손온주;조윤정;이재호;정형민
    • Reproductive and Developmental Biology
    • /
    • 제35권1호
    • /
    • pp.9-15
    • /
    • 2011
  • The functional cardiovascular system is comprised of distinct mesoderm-derived lineages including endothelial cells, vascular smooth muscle cells and other mesenchymal cells. Recent studies in the human embryonic stem cell differentiation model have provided evidence indicating that these cell lineages are developed from the common progenitors such as hemangioblasts and cardiovascular progenitor cells. Also, the studies have suggested that these progenitors have a common primordial progenitor, which expresses KDR (human Flk-1, also known as VEGFR2, CD309). We demonstrate here that sustained activation of BMP4 (bone morphogenetic protein 4) in hESC line, CHA15 hESC results in $KDR^+$ mesoderm specific differentiation. To determine whether the $KDR^+$ population derived from hESCs enhances potential to differentiate along multipotential mesodermal lineages than undifferentiated hESCs, we analyzed the development of the mesodermal cell types in human embryonic stem cell differentiation cultures. In embryoid body (EB) differentiation culture conditions, we identified an increased expression of $KDR^+$ population from BMP4-stimulated hESC-derived EBs. After induction with additional growth factors, the $KDR^+$ population sorted from hESCs-derived EBs displays mesenchymal, endothelial and vascular smooth muscle potential in matrix-coated monolayer culture systems. The populations plated in monolayer cultures expressed increased levels of related markers and exhibit a stable/homologous phenotype in culture terms. In conclusion, we demonstrate that the $KDR^+$ population is stably isolated from CHA15 hESC-derived EBs using BMP4 and growth factors, and sorted $KDR^+$ population can be utilized to generate multipotential mesodermal progenitors in vitro, which can be further differentiated into cardiovascular specific cells.

Endothelin-1-유도 근수축에 관여하는 부활효소의 활성과 물리치료의 상관성 (The Activity of Protein Kinases on the Endothelin-1-induced Muscle Contraction and the relationship of Physical Therapy)

  • 김미선;김일현;황병용;김중환
    • The Journal of Korean Physical Therapy
    • /
    • 제20권3호
    • /
    • pp.53-59
    • /
    • 2008
  • Purpose: The non-receptor-type protein tyrosine kinase Syk (636 amino acids, 72 kDa) is ubiquitously expressed in hematopoietic stem cells and has been widely studied as a regulator and effector of B cell receptor signaling that occurs in processes such as differentiation, proliferation and apoptosis. However, the mechanism relating Syk and p38 mitogen-activated protein kinases (p38MAPK) by endothelin-1 (ET-1, 21 amino acids) stimulation in muscle cells, especially in the volume-dependent hypertensive state, remains unclear. Methods: In this study, we investigated the relationship between Syk and p38MAPK for isometric contraction and enzymatic activity by ET-1 from rat aortic smooth muscle cells and aldosterone-analogue deoxycorticosterone acetate (DOCA) hypertensive state rats (ADHR). Results: The systolic blood pressure was significantly increased in ADHR than in a control group of animals. ET-1 induced isometric contraction and phosphorylation of p38MAPK, which was increased in muscle strips from ADHR. Increased vasoconstriction and phosphorylation of p38MAPK induced by treatment with 30 nM ET-1 were inhibited by the use of 10${\mu}M$ SB203580, an inhibitor of p38MAPK from ADHR. Furthermore, ET-1 induced isometric contraction and phosphorylation of Syk and p38MAPK, which were increased in the aortic smooth muscle cells. Increased tension and phosphorylation of Syk and p38MAPK induced by ET-1 were inhibited by SB203580 from rat aortic smooth muscle cells. Conclusion: These results, suggest that the Syk activity affects ET-1-induced contraction through p38MAPK in smooth muscle cells and that the same pathway directly or indirectly is associated with volume dependent hypertension. The findings suggest the need to develop cardiovascular disease-specialized physical therapy.

  • PDF

GaAlAs 다이오드 레이저 조사가 장지신근 압좌손상 후 요수분절의 TGF-$\beta$ 발현에 미치는 영향 (Effects of GaAIAs Diode Laser for the Expression of TGF-$\beta$ on Lumbar Spinal Cord after Extensor Digitorum Muscle Crush Injury)

  • 김석범;남기원;구현모;이선민;김진상
    • The Journal of Korean Physical Therapy
    • /
    • 제14권4호
    • /
    • pp.87-94
    • /
    • 2002
  • Low intensity laser irradiation is potential physical agent that triggers the muscle regeneration by previous study. In muscle regeneration, a number of growth factors also promotes that is triggered in response to muscle damage. The transforming growth factor(TGF)-$\beta$ is involved in the activation of cell proliferation and the inhibition of cell differentiation in muscle regeneration. This is secreted not only autocrine system but also paracrine and endocrine. Therefore, We investigated that effects of Gallium aluminum arsenide(GaAlAs) diode laser for the expression of TGF-$\beta$ on lumbar spinal cord after extensor digitorum muscle crush injury. After laser irradiation, the immunoreactivity of TGF-$\beta$ was increased bilaterally in gray mater of spinal cord. Especially, in 1 day, experimental group was highed than control, and in 3 day, lateral motor nucleus were storong immunoreactivy of TGF-$\beta$. Also, in 1 and 2 day, TGF-$\beta$ was showed in white mater as well as gray mater, but in 3 day, only showed in gray mater. These data may suggests to the establishment of laser irradiation on spinal cord for skeletal muscle injury.

  • PDF

Expression profiles of microRNAs in skeletal muscle of sheep by deep sequencing

  • Liu, Zhijin;Li, Cunyuan;Li, Xiaoyue;Yao, Yang;Ni, Wei;Zhang, Xiangyu;Cao, Yang;Hazi, Wureli;Wang, Dawei;Quan, Renzhe;Yu, Shuting;Wu, Yuyu;Niu, Songmin;Cui, Yulong;Khan, Yaseen;Hu, Shengwei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권6호
    • /
    • pp.757-766
    • /
    • 2019
  • Objective: MicroRNAs are a class of endogenous small regulatory RNAs that regulate cell proliferation, differentiation and apoptosis. Recent studies on miRNAs are mainly focused on mice, human and pig. However, the studies on miRNAs in skeletal muscle of sheep are not comprehensive. Methods: RNA-seq technology was used to perform genomic analysis of miRNAs in prenatal and postnatal skeletal muscle of sheep. Targeted genes were predicted using miRanda software and miRNA-mRNA interactions were verified by quantitative real-time polymerase chain reaction. To further investigate the function of miRNAs, candidate targeted genes were enriched for analysis using gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment. Results: The results showed total of 1,086 known miRNAs and 40 new candidate miRNAs were detected in prenatal and postnatal skeletal muscle of sheep. In addition, 345 miRNAs (151 up-regulated, 94 down-regulated) were differentially expressed. Moreover, miRanda software was performed to predict targeted genes of miRNAs, resulting in a total of 2,833 predicted targets, especially miR-381 which targeted multiple muscle-related mRNAs. Furthermore, GO and KEGG pathway analysis confirmed that targeted genes of miRNAs were involved in development of skeletal muscles. Conclusion: This study supplements the miRNA database of sheep, which provides valuable information for further study of the biological function of miRNAs in sheep skeletal muscle.

부화 초기 육계의 열 스트레스와 근육발달 (Thermal Stress and Muscle Development in Early Posthatch Broilers)

  • 문양수
    • 한국가금학회지
    • /
    • 제48권4호
    • /
    • pp.255-265
    • /
    • 2021
  • 지구 온난화와 여름철 고온 환경은 육계의 성장 능력뿐만 아니라 동물복지에도 큰 영향을 미친다. 성장과 근육발달 중심으로 선발된 육계는 열 스트레스를 완화시키는 심장과 폐와 같은 핵심 장기들은 비례적으로 성장하지 못하여 급격한 환경 온도 변화에 대처하기가 어렵다. 환경 온도의 변화는 배아 발달 기간 및 부화 초기까지 근육생성에 큰 영향을 준다. 위성세포 또한 고온 스트레스에 매우 민감하다. 고온스트레스는 위성세포의 증식 및 분화 활동에 영향을 주고, 위성세포의 운명뿐만 아니라, 근육 성장 및 구조에 영향을 미친다. 부화 기간의 정교한 온도조절과 부화 초기 사육 환경 온도의 관리는 육계의 성장과 근육 발달, 그리고 동물복지를 결정하는 데 가장 중요한 핵심 요소이다.

미니돼지에서 다능성 피부유래 전구세포의 추출과 이의 다배엽 세포로의 분화유도에 대한 연구 (ISOLATION OF PORCINE MULTIPOTENTIAL SKIN-DERIVED PRECURSOR CELLS AND ITS MULTILINEAGE DIFFERENTIATION)

  • 최문정;변준호;강은주;노규진;김종렬;김욱규;박봉욱
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제34권6호
    • /
    • pp.588-593
    • /
    • 2008
  • There are increasing reports regarding regeneration of the defected tissues using tissue engineering technique. In this technique, multipotential stem cells are essential. There are many potential sources of adult stem cells, such as bone marrow, umbilical cord blood, fat, muscle, dental tissues and skin. Among them, skin is highly accessible and easily obtained with a minimum of donor site complications. Moreover, skin is an abundant adult stem cell sources and has the potential for self-replication and immune privilege. In this study, we isolated skin-derived precursor cells (SKPs) from the ear of adult miniature pigs. In these SKPs, the expression of transcriptional factors, Oct-4, Sox-2, and Nanog were detected by RT-PCR. In vitro osteogenesis and adipogenesis were observed at 3 weeks after transdifferentiations as assayed by positive von Kossa and Oil-red O staining, respectively. In addition, expression of osteocalcin and osteonectin in the osteogenic differentiation medium and $PPAR{\gamma}2$ and aP2 in the adipogenic differentiation medium were detected by RT-PCR. In vitro neurogenesis of porcine SKPs was observed during 24 and 72 hours after treatment of neurogenic differentiation medium. The results of this study suggest that SKPs demonstrate the properties of pluripotence or multipotence and multi-lineage differentiation. This indicates that autogenous SKPs are a reliable and useful source of adult stem cells for regenerative medicine.

Ginsenoside Rg1 from Panax ginseng enhances myoblast differentiation and myotube growth

  • Go, Ga-Yeon;Lee, Sang-Jin;Jo, Ayoung;Lee, Jaecheol;Seo, Dong-Wan;Kang, Jong-Sun;Kim, Si-Kwan;Kim, Su-Nam;Kim, Yong Kee;Bae, Gyu-Un
    • Journal of Ginseng Research
    • /
    • 제41권4호
    • /
    • pp.608-614
    • /
    • 2017
  • Background: Ginsenoside Rg1 belongs to protopanaxatriol-type ginsenosides and has diverse pharmacological activities. In this report, we investigated whether Rg1 could upregulate muscular stem cell differentiation and muscle growth. Methods: C2C12 myoblasts, MyoD-transfected 10T1/2 embryonic fibroblasts, and HEK293T cells were treated with Rg1 and differentiated for 2 d, subjected to immunoblotting, immunocytochemistry, or immunoprecipitation. Results: Rg1 activated promyogenic kinases, p38MAPK (mitogen-activated protein kinase) and Akt signaling, that in turn promote the heterodimerization with MyoD and E proteins, resulting in enhancing myogenic differentiation. Through the activation of Akt/mammalian target of rapamycin pathway, Rg1 induced myotube growth and prevented dexamethasone-induced myotube atrophy. Furthermore, Rg1 increased MyoD-dependent myogenic conversion of fibroblast. Conclusion: Rg1 upregulates promyogenic kinases, especially Akt, resulting in improvement of myoblast differentiation and myotube growth.

Mitochondrial energy metabolic transcriptome profiles during cardiac differentiation from mouse and human pluripotent stem cells

  • Cho, Sung Woo;Kim, Hyoung Kyu;Sung, Ji Hee;Kim, Yeseul;Kim, Jae Ho;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권5호
    • /
    • pp.357-365
    • /
    • 2022
  • Simultaneous myofibril and mitochondrial development is crucial for the cardiac differentiation of pluripotent stem cells (PSCs). Specifically, mitochondrial energy metabolism (MEM) development in cardiomyocytes is essential for the beating function. Although previous studies have reported that MEM is correlated with cardiac differentiation, the process and timing of MEM regulation for cardiac differentiation remain poorly understood. Here, we performed transcriptome analysis of cells at specific stages of cardiac differentiation from mouse embryonic stem cells (mESCs) and human induced PSCs (hiPSCs). We selected MEM genes strongly upregulated at cardiac lineage commitment and in a time-dependent manner during cardiac maturation and identified the protein-protein interaction networks. Notably, MEM proteins were found to interact closely with cardiac maturation-related proteins rather than with cardiac lineage commitment-related proteins. Furthermore, MEM proteins were found to primarily interact with cardiac muscle contractile proteins rather than with cardiac transcription factors. We identified several candidate MEM regulatory genes involved in cardiac lineage commitment (Cck, Bdnf, Fabp4, Cebpα, and Cdkn2a in mESC-derived cells, and CCK and NOS3 in hiPSC-derived cells) and cardiac maturation (Ppargc1α, Pgam2, Cox6a2, and Fabp3 in mESC-derived cells, and PGAM2 and SLC25A4 in hiPSC-derived cells). Therefore, our findings show the importance of MEM in cardiac maturation.

Antiobesity Effect of Mixture of Black Garlic and Garsinia cambogia Extracts in 3T3-L1 Adipocytes and L6 Skeletal Muscle Cells

  • Jung, Young-Mi;Lee, Dong-Sub;Lee, Seon-Ha;Jeoung, Nam-Ho;Kim, Bok-Jo
    • 대한의생명과학회지
    • /
    • 제18권3호
    • /
    • pp.291-298
    • /
    • 2012
  • The antiobesity effect of the mixture of black garlic and Garsinia cambogia extracts (BGG) was investigated by measuring the Oil red O staining and the expressions of adipogenic genes during preadipocyte differentiation by real-time PCR in the 3T3-L1 adipocytes. BGG reduced contents of Oil red O dye in the 3T3-L1 adipocytes. mRNA expression levels of SREBP1c, C/EBPa, aP2/FABP4, and $PPAR{\gamma}$ which are adipogenic transcription factor, in cells treated with BGG were also significantly down regulated. Also, the phosphorylation of AMP-activated protein kinase (AMPK) in L6 cells was more increased by BGG. These results indicate that BGG seems to be more attractive compound for application of industry than individual extracts such as black garlic and Garsinia cambogia, considering it has two effects not only inhibit the preadipocyte differentiation but also activate the phosphorylation of AMPK unlike other two compound.