• Title/Summary/Keyword: muscarinic receptors

Search Result 138, Processing Time 0.027 seconds

Antipsychotics for patients with pain

  • Shin, Sang Wook;Lee, Jin Seong;Abdi, Salahadin;Lee, Su Jung;Kim, Kyung Hoon
    • The Korean Journal of Pain
    • /
    • v.32 no.1
    • /
    • pp.3-11
    • /
    • 2019
  • Going back to basics prior to mentioning the use of antipsychotics in patients with pain, the International Association for the Study of Pain (IASP) definition of pain can be summarized as an unpleasant experience, composed of sensory experience caused by actual tissue damage and/or emotional experience caused by potential tissue damage. Less used than antidepressants, antipsychotics have also been used for treating this unpleasant experience as adjuvant analgesics without sufficient evidence from research. Because recently developed atypical antipsychotics reduce the adverse reactions of extrapyramidal symptoms, such as acute dystonia, pseudo-parkinsonism, akathisia, and tardive dyskinesia caused by typical antipsychotics, they are expected to be used more frequently in various painful conditions, while increasing the risk of metabolic syndromes (weight gain, diabetes, and dyslipidemia). Various antipsychotics have different neurotransmitter receptor affinities for dopamine (D), 5-hydroxytryptamine (5-HT), adrenergic (${\alpha}$), histamine (H), and muscarinic (M) receptors. Atypical antipsychotics antagonize transient, weak $D_2$ receptor bindings with strong binding to the $5-HT_{2A}$ receptor, while typical antipsychotics block long-lasting, tight $D_2$ receptor binding. On the contrary, antidepressants in the field of pain management also block the reuptake of similar receptors, mainly on the 5-HT and, next, on the norepinephrine, but rarely on the D receptors. Antipsychotics have been used for treating positive symptoms, such as delusion, hallucination, disorganized thought and behavior, perception disturbance, and inappropriate emotion, rather than the negative, cognitive, and affective symptoms of psychosis. Therefore, an antipsychotic may be prescribed in pain patients with positive symptoms of psychosis during or after controlling all sensory components.

Cholinergic Activity Related to Cardiovascular Regulation in Rostral Ventrolateral Medulla of Spontaneously Hypertensive Rats

  • Lee, Seok-Yong;Lee, Sang-Bok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.1
    • /
    • pp.29-34
    • /
    • 1999
  • The hyperactivity of cholinergic system in the RVLM of spontaneously hypertensive rats (SHR) may contribute to the sustained elevation of blood pressure. However, the hyperactivity mechanisms of cholinergic system are controversial. Thus, to clarify the mechanisms of cholinergic hyperactivity in RVLM of the SHR, we studied the activities of enzymes that participate in the biosynthesis and degradation of acetylcholine (ACh) and the density of muscarinic receptors in RVLM of the 14- to 18-week-old SHR and age-marched Wistar Kyoto rats (WKY). Choline acetyltransferase activity was far greater in RVLM of SHR than that of WKY. $[^3H]ACh$ release from RVLM was also greater in SHR than in WKY. Acetylcholinesterase activity and $[^3H]NMS$ binding of RVLM slice of SHR were not significantly different from that of WKY. These results suggest that the enhanced cholinergic mechanisms in the RVLM of SHR is due to the enhanced presynaptic cholinergic tone rather than the altered postsynaptic mechanisms.

  • PDF

The effect of atropine in preventing catheter-related pain and discomfort in patients undergoing transurethral resection due to bladder tumor; prospective randomized, controlled study

  • Sahiner, Yeliz;Yagan, Ozgur;Ekici, Arzu Akdagli;Ekici, Musa;Demir, Emre
    • The Korean Journal of Pain
    • /
    • v.33 no.2
    • /
    • pp.176-182
    • /
    • 2020
  • Background: Catheter-related bladder discomfort (CRBD) has been observed in many patients undergoing a urethral catheterization. CRBD may be so severe that the patients require additional analgesics. Muscarinic receptors are involved in the mechanism of CRBD. The aim of this study is to determine the effects of the antimuscarinic properties of atropine, which is frequently used in current practice on CRBD, by comparing it with sugammadex which has no antimuscarinic effects. Methods: Sixty patients selected for transurethral resection due to bladder tumors were randomized into 2 groups: an atropine group and a sugammadex group, with no antimuscarinic effect. The patients were given rocuronium (0.6 mg/kg) as a neuromuscular-blocker. In addition to the frequency and severity of CRBD postoperatively at 0, 1, 6, 12, and 24 hours, postoperative numeric rating scale (NRS) scores, and postoperative nausea and vomiting were examined. Results: The incidence of CRBD was significantly lower in the atropine group in all postoperative measurements. The score was found to be significantly lower in the atropine group when NRS measurements were performed at all time periods (P < 0.01). There was no difference between the groups in terms of nausea and vomiting (P > 0.05). Conclusions: Atropine is a cheap, easy-to-access, safe-to-use drug for reducing CRBD symptoms, without any observed adverse effects. Since it not only reduces CRBD symptoms but also has a positive effect on postoperative pain, it can be used safely to increase patient comfort in patients receiving general anesthesia and a urinary catheter.

Influence of Glibenclamide on Catecholamine Secretion in the Isolated Rat Adrenal Gland

  • No, Hae-Jeong;Woo, Seong-Chang;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • v.15 no.2
    • /
    • pp.108-117
    • /
    • 2007
  • The aim of the present study was to investigate the effect of glibenclamide, a hypoglycemic sulfonylurea, which selectively blocks ATP-sensitive K$^+$ channels, on secretion of catecholamines (CA) evoked by cholinergic stimulation and membrane depolarization from the isolated perfused rat adrenal glands. The perfusion of glibenclamide (1.0 mM) into an adrenal vein for 90 min produced time-dependently enhanced the CA secretory responses evoked by ACh (5.32 mM), high K$^+$ (a direct membrane depolarizer, 56 mM), DMPP (a selective neuronal nicotinic receptor agonist, 100 ${\mu}$M for 2 min), McN-A-343 (a selective muscarinic M1 receptor agonist, 100 ${\mu}$M for 2 min), Bay-K-8644 (an activator of L-type dihydropyridine Ca$^{2+}$ channels, 10 ${\mu}$M for 4 min) and cyclopiazonic acid (an activator of cytoplasmic Ca$^{2+}$-ATPase, 10 ${\mu}$M for 4 min). In adrenal glands simultaneously preloaded with glibenclamide (1.0 mM) and nicorandil (a selective opener of ATP-sensitive K$^+$ channels, 1.0 mM), the CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were recovered to the considerable extent of the control release in comparison with that of glibenclamide-treatment only. Taken together, the present study demonstrates that glibenclamide enhances the adrenal CA secretion in response to stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization from the isolated perfused rat adrenal glands. It seems that this facilitatory effect of glibenclamide may be mediated by enhancement of both Ca$^{2+}$ influx and the Ca$^{2+}$ release from intracellular store through the blockade of K$_{ATP}$ channels in the rat adrenomedullary chromaffin cells. These results suggest that glibenclamide-sensitive K$_{ATP}$ channels may play a regulatory role in the rat adrenomedullary CA secretion.

Influence of Tacrine on Catecholamine Secretion in the Perfused Rat Adrenal Gland

  • Jang, Seok-Jeong;Yang, Won-Ho;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.4
    • /
    • pp.207-214
    • /
    • 2002
  • The present study was designed to clarify whether tacrine affects the release of catecholamines (CA) from the isolated perfused model of rat adrenal gland or not and to elucidate the mechanism of its action. Tacrine $(3{\times}10^{-5}{\sim}3{\times}10^{-4}\;M)$ perfused into an adrenal vein for 60 min inhibited CA secretory responses evoked by ACh $(5.32{\times}10^{-3}\;M),$ DMPP (a selective neuronal nicotinic agonist, $10^{-4}$ M for 2 min) and McN-A-343 (a selective muscarinic M1-agonist, $10^{-4}$ M for 2 min) in relatively dose- and time- dependent manners. However, tacrine failed to affect CA secretion by high $K^+\;(5.6{\times}10^{-2}\;M).$ Tacrine itself at concentrations used in the present experiments did not also affect spontaneous CA output. Furthermore, in the presence of tacrine $(10^{-4}\;M),$ CA secretory responses evoked by Bay-K-8644 (an activator of L-type $Ca^{2+}$ channels, $10^{-4}\;M),$ but not by cyclopiazonic acid (an inhibitor of cytoplasmic $Ca^{2+}-ATPase,\;10^{-4}\;M),$ was relatively time-dependently attenuated. Also, physostigmine $10^{-4}\;M),$ given into the adrenal gland for 60 min, depressed CA secretory responses evoked by ACh, McN-A-343 and DMPP while did not affect that evoked by high $K^+.$ Collectively, these results obtained from the present study demonstrate that tacrine greatly inhibits CA secretion from the perfused rat adrenal gland evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors, but does fail to affect that by direct membrane-depolarization. It is suggested that this inhibitory effect of tacrine may be exerted by blocking both the calcium influx into the rat adrenal medullary chromaffin cells without $Ca^{2+}$ release from the cytoplasmic calcium store, that is relevant to the cholinergic blockade. Also, the mode of action between tacrine and physostigmine in rat adrenomedullary CA secretion seems to be similar.

Cotinine Inhibits Catecholamine Release Evoked by Cholinergic Stimulation from the Rat Adrenal Medulla

  • Koh, Young-Yeop;Jang, Seok-Jeong;Lim, Dong-Yoon
    • Archives of Pharmacal Research
    • /
    • v.26 no.9
    • /
    • pp.747-755
    • /
    • 2003
  • The aim of the present study was to clarify whether cotinine affects the release of catecholamines (CA) from the isolated perfused rat adrenal gland, and to establish the mechanism of its action, in comparison with the response of nicotine. Cotinine (0.3∼3 mM), when perfused into an adrenal vein for 60 min, inhibited CA secretory responses evoked by ACh (5.32 mM), DMPP (a selective neuronal nicotinic agonist, 100 $\mu$M for 2 min) and McN-A-343 (a selective muscarinic $M_1 -agonist, 100 \mu$ M for 2 min) in dose- and time-dependent manners. However, cotinine did not affect CA secretion by high $K^+$ (56 mM). Cotinine itself also failed to affect basal CA output. Furthermore, in the presence of cotinine (1 mM), CA secretory responses evoked by Bay-K-8644 (an activator of L-type $Ca^{2+}$ channels, 10 $\mu$ M) and cyclopiazonic acid (an inhibitor of cytoplasmic $Ca^{2+}-ATPase, 10 \mu$ M) were relative time-dependently attenuated. However, nicotine (30$\mu$ M), given into the adrenal gland for 60 min, initially rather enhanced CA secretory responses evoked by ACh and high $K^+$, followed by the inhibition later, while it time-dependently depressed the CA release evoked by McN-A-343 and DMPP. Taken together, these results suggest that cotinine inhibits greatly CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors, but does fail to affect that by the direct membrane-depolarization. It seems that this inhibitory effect of cotinine may be exerted by the cholinergic blockade, which is associated with blocking both the calcium influx into the rat adrenal medullary chromaffin cells and $Ca^{2+}$ release from the cytoplasmic calcium store. It also seems that there is a big difference in the mode of action between cotinine and nicotine in the rat adrenomedullary CA secretion.

R-(-)-TNPA, a Dopaminergic $D_2$ Receptor Agonist, Inhibits Catecholamine Release from the Rat Adrenal Medulla

  • Hong, Soon-Pyo;Seo, Hong-Joo;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.5
    • /
    • pp.273-282
    • /
    • 2006
  • The aim of the present study was to investigate the effects of R-(-)-2,10,11-trihydroxy-N-propylnoraporphine [R-(-)-TNPA], a selective agonist of dopaminergic $D_2$ receptor and S(-)-raclopride, a selective antagonist of dopaminergic $D_2$ receptor, on the secretion of catecholamines (CA) evoked by cholinergic stimulation and membrane-depolarization in the isolated perfused model of the rat adrenal gland, and also to establish its mechanism of action. R-(-)-TNPA $(10{\sim}100\;{\mu}M)$ perfused into an adrenal vein for 60 min produced dose- and time-dependent inhibition in CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM), DMPP $(100\;{\mu}M)$ and McN-A-343 $(100\;{\mu}M)$. R-(-)-TNPA itself did also fail to affect basal CA output. Also, in adrenal glands loaded with R-(-)-TNPA $(30\;{\mu}M)$, the CA secretory responses evoked by Bay-K-8644 $(10\;{\mu}M)$, an activator of L-type $Ca^2+$ channels and cyclopiazonic acid $(10\;{\mu}M)$, an inhibitor of cytoplasmic $Ca^{2+}-ATPase$ were also inhibited. However, S(-)-raclopride $(1{\sim}10\;{\mu}M)$, given into an adrenal vein for 60 min, enhanced the CA secretory responses evoked by ACh, high $K^+$, DMPP and McN-A-343 only for the first period (4 min), although it alone has weak effect on CA secretion. Moreover, S(-)-raclopride $(3.0\;{\mu}M)$ in to an adrenal vein for 60 min also augmented the CA release evoked by BAY-K-8644 and cyclopiazonic acid only for the first period (4 min). However, after simultaneous perfusion of R-(-)-TNP A $(30\;{\mu}M)$ and S(-)-raclopride $(3.0\;{\mu}M)$, the inhibitory responses of R(-)-TNPA $(30\;{\mu}M)$ on the CA secretion evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644, and cyclopiazonic acid were significantly reduced. Taken together, these experimental results suggest that R-(-)-TNPA greatly inhibits the CA secretion from the perfused rat adrenal medulla evoked by cholinergic stimulation (both nicotininc and muscarinic receptors) and membrane depolarization, but S(-)-raclopride rather enhances the CA release by them. It seems that this inhibitory of R-(-)-TNPA may be mediated by stimulation of inhibitory dopaminergic $D_2$ receptors located on the rat adrenomedullary chromaffin cells, while the facilitatory effect of S(-)-raclopride is due to the blockade of dopaminergic $D_2$ receptors, which are relevant to extra- and intracellular calcium mobilization. Therefore, it is thought that dopaminergic $D_2$ receptors may be involved in regulation of CA release in the rat adrenal medulla.

G Protein-Coupled Receptor Signaling in Gastrointestinal Smooth Muscle

  • Sohn, Uy-Dong;Kim, Dong-Seok;Murthy, Karnam S.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.4
    • /
    • pp.287-297
    • /
    • 2001
  • Contraction of smooth muscle is initiated by an increase in cytosolic $Ca^{2+}$ leading to activation of $Ca^{2+}$/ calmodulin-dependnet myosin light chain (MLC) kinase and phosphorylation of MLC. The types of contraction and signaling mechanisms mediating contraction differ depending on the region. The involvement of these different mechanisms varies depending on the source of $Ca^{2+}$ and the kinetic of $Ca^{2+}$ mobilization. $Ca^{2+}$ mobilizing agonists stimulate different phospholipases $(PLC-{\beta},\;PLD\;and\;PLA_2)$ to generate one or more $Ca^{2+}$ mobilizing messengers $(IP_3\;and\;AA),$ and diacylglycerol (DAG), an activator of protein kinase C (PKC). The relative contributions of $PLC-{\beta},\;PLA_2$ and PLD to generate second messengers vary greatly between cells and types of contraction. In smooth muscle cell derived form the circular muscle layer of the intestine, preferential hydrolysis of $PIP_2$ and generation of $IP_3$ and $IP_3-dependent\;Ca^{2+}$ release initiate the contraction. In smooth muscle cells derived from longitudinal muscle layer of the intestine, preferential hydrolysis of PC by PLA2, generation of AA and AA-mediated $Ca^{2+}$ influx, cADP ribose formation and $Ca^{2+}-induced\;Ca^{2+}$ release initiate the contraction. Sustained contraction, however, in both cell types is mediated by $Ca^{2+}-independent$ mechanism involving activation of $PKC-{\varepsilon}$ by DAG derived form PLD. A functional linkage between $G_{13},$ RhoA, ROCK, $PKC-{\varepsilon},$ CPI-17 and MLC phosphorylation in sustained contraction has been implicated. Contraction of normal esophageal circular muscle (ESO) in response to acetylcholine (ACh) is linked to $M_2$ muscarinic receptors activating at least three intracellular phospholipases, i.e. phosphatidylcholine-specific phospholipase C (PC-PLC), phospholipase D (PLD) and the high molecular weight (85 kDa) cytosolic phospholipase $A_2\;(cPLA_2)$ to induce phosphatidylcholine (PC) metabolism, production of diacylglycerol (DAG) and arachidonic acid (AA), resulting in activation of a protein kinase C (PKC)-dependent pathway. In contrast, lower esophageal sphincter (LES) contraction induced by maximally effective doses of ACh is mediated by muscarinic $M_3$ receptors, linked to pertussis toxin-insensitive GTP-binding proteins of the $G_{q/11}$ type. They activate phospholipase C, which hydrolyzes phosphatidylinositol bisphosphate $(PIP_2),$ producing inositol 1, 4, 5-trisphosphate $(IP_3)$ and DAG. $IP_3$ causes release of intracellular $Ca^{2+}$ and formation of a $Ca^{2+}$-calmodulin complex, resulting in activation of myosin light chain kinase and contraction through a calmodulin-dependent pathway.

  • PDF

Provinol Inhibits Catecholamine Secretion from the Rat Adrenal Medulla

  • Lee, Jung-Hee;Seo, Yu-Seung;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.3
    • /
    • pp.229-239
    • /
    • 2009
  • The aim of the present study was to examine the effect of provinol, which is a mixture of polyphenolic compounds from red wine, on the secretion of catecholamines (CA) from isolated perfused rat adrenal medulla, and to elucidate its mechanism of action. Provinol (0.3 ${\sim}$ 3 ${\mu}g/ml$) perfused into an adrenal vein for 90 min dose- and time-dependently inhibited the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (a direct membrane-depolarizer, 56 mM), DMPP (a selective neuronal nicotinic $N_N$ receptor agonist, 100 ${\mu}M$) and McN-A-343 (a selective muscarinic $M_1$ receptor agonist, 100 ${\mu}M$). Provinol itself did not affect basal CA secretion. Also, in the presence of provinol (1 ${\mu}g/ml$), the secretory responses of CA evoked by Bay-K-8644 (a voltage-dependent L-type dihydropyridine $Ca^{2+}$ channel activator, 10 ${\mu}M$), cyclopiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, 10 ${\mu}M$) and veratridine (an activator of voltage-dependent $Na^+$ channels, 10 ${\mu}M$) were significantly reduced. Interestingly, in the simultaneous presence of provinol (1 ${\mu}g/ml$) plus L-NAME (a selective inhibitor of NO synthase, 30 ${\mu}M$), the CA secretory responses evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclpiazonic acid recovered to the considerable extent of the corresponding control secretion in comparison with the inhibition of provinol-treatment alone. Under the same condition, the level of NO released from adrenal medulla after the treatment of provinol (3 ${\mu}g/ml$) was greatly elevated in comparison to its basal release. Taken together, these data demonstrate that provinol inhibits the CA secretory responses evoked by stimulation of cholinergic (both muscarinic and nicotinic) receptors as well as by direct membrane-depolarization from the perfused rat adrenal medulla. This inhibitory effect of provinol seems to be exerted by inhibiting the influx of both calcium and sodium into the rat adrenal medullary cells along with the blockade of $Ca^{2+}$ release from the cytoplasmic calcium store at least partly through the increased NO production due to the activation of nitric oxide synthase.

Pharmacological Studies on Human Vas Deferens -Coexistence of Adrenergic and Cholinergic Receptors, and Effect of Diazepam- (인체 정관의 약리학적 검색 -아드레날린성 및 콜린성 수용체의 공존과 Diazepam의 작용-)

  • Kim, Won-Joon;Lee, Kwang-Youn;Ha, Jeoung-Hee;Park, Tong-Choon
    • The Korean Journal of Pharmacology
    • /
    • v.24 no.2
    • /
    • pp.189-195
    • /
    • 1988
  • This study aimed to investigate the autonomic innervations of human vas deferens and the effect of diazepam, a benzodiazepine sedative antianxiety drug, on the smooth muscle contractility of vas deferens. The specimens were obtained from healthy volunteers undergoing elective vasectomy with local anesthesia. The muscle preparation did not show any spontaneous contraction, but showed a good contraction induced by norepinephrine exerting the strongest response at $33^{\circ}C$. Phentolamine inhibited the norepinephrine-induced contraction concentration-dependently. Isoproterenol, a beta-adrenergic agonist evoked a considerable extent of contraction, and this contractile activity was antagonized by propranolol, a beta-adrenergic blocking agent. Acetylcholine induced a dashing contraction of the human vas deferens, and atropine, a muscarinic receptor blocking agent abolished the acetylcholine-induced contraction. Diazepam inhibited the norepinephrine-induced contraction in a concentration dependent manner. These results suggest that the smooth muscle of human vas deferens has cholinergic muscarinic and beta adrenergic receptors as well as the predominant alpha adrepergic receptor. Diazepam inhibits the motility, especially norepinephrine-induced contraction of human vas deferens.

  • PDF