통계적 공정관리에서 프로파일 관리도란 다수의 품질 특성치 간 함수관계의 변화를 탐지하는 것을 말한다. 두 변수 간 선형의 관계가 있는 경우, 선형 프로파일을 가정하고 절편과 기울기가 일정한지 모니터링한다. 이때 선형 프로파일에 관한 대부분의 기존 연구에서는 모든 프로파일에서 설명변수의 관측치가 동일하다고 가정한다. 그러나 프로파일마다 설명변수의 값이 랜덤하게 관측되는 경우도 존재한다. 본 논문에서는 단순 선형 프로파일 모니터링에서 설명변수가 프로파일마다 랜덤하게 관측된다는 가정하에 기존의 방법을 확장 적용하고자 한다. 모의실험을 통해 제안한 방법의 탐지 성능을 확인하고 네트워크 침입 탐지 알고리즘 성능을 비교하기 위한 NSL-KDD 데이터를 이용하여 제안된 침입 탐지 결과를 비교해 보았다.
비선형 주성분 분석은 기존에 널리 알려져 있는 주성분 분석기법과 유사한 다변수 데이터 분석을 위한 새로운 접근 방법이다. 비선형 주성분 분석은 AANN(Auto Associative Neural Network)으로 PCA와 마찬가지로 변수들 간에 존재하는 상관관계를 제거함으로써 고차의 다변수 데이터를 정보의 손실을 최소화하면서 최소 차원의 데이터로 변환하는 기법이다. AANN기반 센서 고장 검출 기법을 실제 방재시스템에 적용하여 봄으로써 센서 드리프트 등과 같은 센서 고장의 검출 및 유효한 센서 보정 성능을 확인하였다.
최근에 발생하는 강우양상은 강우일수는 감소하고, 강우강도는 증가해 홍수발생 빈도 역시 증가하는 추세이다. 이를 반영하기 위한 기존의 방법은 수공구조물의 설계홍수량을 산정할 때 가능최대강우량을 도입하거나, 설계빈도를 높이는 등의 확정론적 방법에 의존한다. 그러나 이렇게 설계기준을 상향 조정한 경우, 설계빈도의 강우가 발생하지 않으면 수공구조물의 경제성 측면에서 문제가 될 소지가 있다. 또한 수공구조물의 규모가 클수록 인근 주민과의 마찰이 커지고, 환경 문제의 발생 역시 고려하지 않을 수 없다. 이에 따라 설계빈도의 무조건적인 상향조정에 의존하기보다 추계학적 방법을 도입한 수문량의 확충 및 매개변수의 불확실성을 수공구조물 설계 시에 고려하기 위한 연구가 활발히 진행되고 있다. 본 연구에서는 강우발생의 불확실성을 반영하여 제내지에서의 침수범위를 GIS상에서 검토하였다. 이를 위해 log-ratio 방법, Johnson 시스템, 직교변환을 활용한 다변량 Monte Carlo 기법으로 추계학적 시간에 따른 강우변동을 생성하였다. 생성된 강우변동 결과를 토대로 수문분석, 홍수위 분석 등을 실시하고 FLUMEN 모형을 적용하여 해당유역에 대한 홍수범람시 침수범위를 산정하였다. 본 연구결과는 실제 강우의 불확실성을 반영하고 있어 시 공간적 강우특성이 반영된 유역별 주민대피지도, 홍수위험지도 등을 제작하는데 활용될 수 있을 것으로 판단된다.
본 연구에서는 Clark 합성단위도의 매개변수 추정치에 대한 신뢰구간을 좁힐 수 있는 방안으로, 이들을 강우, 기상, 및 유역 특성인자로 다변량 회귀분석한 후 이를 Monte Carlo 모의기법을 통하여 분석하였다. 아울러 이렇게 얻은 결과는 Bootstrap 기법으로 분석한 결과 및 기존에 많이 사용되어 왔던 경험식과도 비교 검토하였다. 이상과 같은 과정을 통해 얻은 결과는 다음과 같다. (1) 관측된 호우사상의 수가 제한적인 경우, 유출특성에 미치는 인자들을 복합적으로 고려하여 유역의 평균유출특성을 추정하는 것이 가능하다. (2) Monte Carlo 모의기법을 적용하여 추정된 집중시간 및 저류상수의 신뢰도 평가가 가능하다. 이렇게 추정한 신뢰구간은 유철상 등(2006)에서의 신뢰구간에 비해 훨씬 좁은 것으로 파악되었다. (3) Bootstrap을 통한 관측자료의 분석에서도 위의 결과를 지지하는 결론을 얻을 수 있었다. 그러나 어느 정도 신뢰도 있는 집중시간 및 저류상수의 추정을 위해서는 최소 20개 정도 이상의 독립된 호우사상이 필요할 것으로 파악되었다. (4) 기존의 경험공식과의 비교에서는 어떤 공식도 본 유역의 유출특성을 잘 대변하지는 못하는 것으로 파악되었다. 그러나 집중시간의 경우 Kraven(I)과 Kraven(II)이 저류상수의 경우 Linsley 공식이 유사한 값을 주는 것으로 나타났다. 그러나 이 값 역시 상한과 하한의 범위에 크므로 사용 시 주의할 필요가 있음을 파악할 수 있었다.
한우 종모우 선발을 위한 유전능력 평가에서 고려되는 형질들 중 이산형 형태로 조사되는 근내지방도의 유전변이가 추정방법에 따라 어느 정도 차이가 있는지 알아보기 위한 모의실험을 실시하였다. 모의실험 자료는 연속변량으로 간주되는 도체중 및 배장근단면적과 근내지방도의 잠재변수를 다변량 정규분포함수에서 생성하였고 근내지방도의 잠재변수를 이용하여 특정 임계값을 중심으로 순서화된 근내지방도 점수로 변화 하였따. 근내지방도의 점수 부여방법으로써 비거세우에서 조사된 근내지방도의 점수 1${\sim}$5점 사이에 정규분포에서 크게 어긋나는 분포특성을 갖도록 자료(DSI)를 생성하였고 또한 한우 거세우에서 현재 조사되고 있는 점수 1${\sim}$7점 사이에 정규 분포에 좀더 접근한 분포특성을 갖는 모의 자료(DS2)를 생성하였다. 분석방법간에 유전변이 추정의 정확도를 알아보기 위하여 1) 생성된 이들 자료를 선형으로 간주하고 다형질 혼합 선형 개체모형에서 REML 분석방법으로 유전변이를 추정하였고 2) 특정 임계치를 중심으로 잠재변수가 존재한다는 가정하에 다형질 임계 개체 혼합모형을 설정하여 Gibbs sampling 방법으로 유전변이를 추정하였다. 여기서 추정된 유전변이(유전력, 유전상관 및 잔차상관)에 대하여 모수와의 차이를 검정함으로써 편의되는 정도를 알아보았다. 모의실험은 각 자료에 대하여 10회 실시하였다. 분석결과, 근내지방도의 유전력 추정치는 DS1에서는 다형질 임계개체혼합모형을 설정하여 Gibbs sampling 방법으로 모수에 대한 사후분포의 평균으로 계산한 결과 참값과 유의적인 차이가 없는 것으로 분석되었다. 반면에 근내지방도를 선형으로 간주하고 다형질 선형 개체혼합모형에 의한 유전력 추정치는 모수보다 매우 낮은 유전력을 보였다(0.500 vs 0.315). 유전상관 추정치는 선형모형에서의 REML 방법 또는 임계모형에서의Gibbs sampling 방법에서 모두 모수와 유의적인 차이가 없는 것으로 분석되었으나 근내지방도의 잔차상관에 있어서 REML 방법으로 분석하였을 경우에 모수보다 낮게 추정되었다. 반면에 범주형 모형에서는 모수와 추정치 간에 유의적인 차이가 없는 것으로 분석되었다. 또한 7개의 범주형으로 조사된 자료(DS2)에서 이들 추정치는 DS1에서와 동일한 경향을 보였는데 그 편의 정도는 다소 적어지는 경향을 보였다. 따라서 이산형으로 조사되는 근내지방도에 대한 유전변이를 추정하기 위해서는 범주형 임계모형이 선형모형 보다 사소 정확한 추정을 할 수 있을 것으로 판단 되었다.
Analyzing patterns in data points embedded in linear and non-linear feature spaces is considered as one of the common research problems among different research areas, for example: data mining, machine learning, pattern recognition, and multivariate analysis. In this paper, data points are heterogeneous sets of biosequences (composite data points). A composite data point is a set of ordinary data points (e.g., set of feature vectors). We theoretically extend the derivation of the largest generalized eigenvalue-based distance metric Dij(γ1) in any linear and non-linear feature spaces. We prove that Dij(γ1) is a metric under any linear and non-linear feature transformation function. We show the sufficiency and efficiency of using the decision rule $\bar{{\delta}}_{{\Xi}i}$(i.e., mean of Dij(γ1)) in classification of heterogeneous sets of biosequences compared with the decision rules min𝚵iand median𝚵i. We analyze the impact of linear and non-linear transformation functions on classifying/clustering collections of heterogeneous sets of biosequences. The impact of the length of a sequence in a heterogeneous sequence-set generated by simulation on the classification and clustering results in linear and non-linear feature spaces is empirically shown in this paper. We propose a new concept: the limiting dispersion map of the existing clusters in heterogeneous sets of biosequences embedded in linear and nonlinear feature spaces, which is based on the limiting distribution of nucleotide compositions estimated from real data sets. Finally, the empirical conclusions and the scientific evidences are deduced from the experiments to support the theoretical side stated in this paper.
임계값을 기준으로 그 보다 작은 값은 로그정규분포(lognormal distribution; LN)를, 큰 값은 일반화파레토분포(generalized Pareto distribution; GPD)를 따르는 합성 분포를 LN-GPD 합성분포라 한다. Scollnik (2007)은 LN-GPD 합성분포가 로그정규분포와 GPD를 합성 시킴으로써 자료의 손실 없이 꼬리가 두꺼운 분포에서 좋은 적합력을 가진다고 밝혔다. 본 논문에서는 시간에 따라 변하는 LN-GPD 평균모형을 다루었으며 방법론으로는 국소 다항최대우도법을 기반으로 추정하는 방법에 대해서 연구하였다. 시간에 따라 변하는 분포를 추정함으로써 자료에 대한 훨씬 자세한 이해가 가능하며 이는 곧 상담원 배치나 자원배분과 같은 운영관리에 큰 도움을 줄 수 있다. 본 연구는 GPD 분포만을 고려한 Beirlant와 Goegebeur (2004)를 확장하여 절삭한 로그정규분포를 추가하여 자료의 손실 없이 자료의 특징을 살펴볼 수 있다는데도 의의가 있다. 모의실험을 통해 제안한 방법론의 적절함을 살펴 보았고 실증 자료 분석으로 이스라엘 은행의 콜센터 서비스 시간에 대해 분석하여 상담원 배치와 관련된 흥미로운 결과를 찾을 수 있었다.
This paper deals with the problem of channel identification for Single Input Multiple Output (SIMO) slow fading channels using clustering algorithms. Due to the intrinsic memory of the discrete-time model of the channel, over short observation periods, the received data vectors of the SIMO model are spread in clusters because of the AWGN noise. Each cluster is practically centered around the ideal channel output labels without noise and the noisy received vectors are distributed according to a multivariate Gaussian distribution. Starting from the Markov SIMO channel model, simultaneous maximum ikelihood estimation of the input vector and the channel coefficients reduce to one of obtaining the values of this pair that minimizes the sum of the Euclidean norms between the received and the estimated output vectors. Viterbi algorithm can be used for this purpose provided the trellis diagram of the Markov model can be labeled with the noiseless channel outputs. The problem of identification of the ideal channel outputs, which is the focus of this paper, is then equivalent to designing a Vector Quantizer (VQ) from a training set corresponding to the observed noisy channel outputs. The Linde-Buzo-Gray (LBG)-type clustering algorithms [1] could be used to obtain the noiseless channel output labels from the noisy received vectors. One problem with the use of such algorithms for blind time-varying channel identification is the codebook initialization. This paper looks at two critical issues with regards to the use of VQ for channel identification. The first has to deal with the applicability of this technique in general; we present theoretical results for the conditions under which the technique may be applicable. The second aims at overcoming the codebook initialization problem by proposing a novel approach which attempts to make the first phase of the channel estimation faster than the classical codebook initialization methods. Sample simulation results are provided confirming the effectiveness of the proposed initialization technique.
독립성분분석은 차원이 높은 다변량데이타로부터 기저구조를 형성하는 독립성분을 분리하는데 사용되는 기법으로서 패턴인식, 예측 등 2차적 분석을 위한 1차 분석단계에서 사용할 수 있다. 본 연구에서는 독립성분분석을 이용하여 여러 혼합물 데이터로부터 독립성분을 분리한 다음 각 구성성분의 혼합비율을 예측하는 절차를 제안한다. 적용예로서 도금강판의 엑스선 회절강도값으로부터 여러가지 상을 분리한 다음 비음최소자승법을 이용하여 각 상의 분율을 예측하였으며, 이러한 제안방안의 타당성 평가를 위하여 모의 실험을 실시하였다.
As the Arctic sea ice decreases due to various reasons such as global warming, the demand for ships and offshore structures operating in the Arctic region is steadily increasing. In the case of sea ice, the anisotropy is caused by the uncertainty inside the material. For most of the research, nevertheless, estimating the ice load has been treated deterministically. With regard to this, in this paper, a four-point bending strength analysis of an ice specimen was attempted using a stochastic finite element method. First, spatial distribution of the material properties used in the yield criterion was assumed to be a multivariate Gaussian random field. After that, a direct method, which is a sort of stochastic finite element method, and a sensitivity method using the sensitivity of response for random variables were proposed for calculating the probabilistic distribution of ice specimen strength. A parametric study was conducted with different mean vectors and correlation lengths for each material property used in the above procedure. The calculation time was about ten seconds for the direct method and about three minutes for the sensitivity methods. As the cohesion and correlation length increased, the mean value of the critical load and the standard deviation increased. On the contrary, they decreased as the friction angle increased. Also, in all cases, the direct and sensitivity methods yielded very similar results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.