• Title/Summary/Keyword: multivariable system

Search Result 247, Processing Time 0.023 seconds

PID Control for Nonlinear Multivariable System using GA (GA를 이용한 비선형 다변수시스템의 PID제어)

  • Seo, Kang-Myun;An, Joung-Hoon;Kang, Moon-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2146-2148
    • /
    • 2002
  • In this paper, PID control method using genetic algorithm to control the nonlinear multivariable system is presented. Genetic algorithms are global search techniques for nonlinear optimization. For experiment, the x-y rod balancing system with driver circuit board is fabricated. Experiments such as angle and position control for system are performed. The validity and control performance of the GA-based PID controller are confirmed by experimental results.

  • PDF

Attitude controller design and implementation for a helicopter propeller setup using a robust multivariable control (견실한 다변수 제어에 의한 모형 헬리콥터의 자세제어기 설계및 실현)

  • Lee, Seung-Guk;Lee, Myeong-Ui;Gwon, O-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.32-37
    • /
    • 1998
  • This paper deals with the implementation of a robust multivariable controller using DSP board and the application to real systems. The LQG/LTR (Linear Quadratic Gaussian with Loop Transfer Recovery) controller proposed by Doyle et al.[1,2] is adopted to design the control system. A helicopter propeller setup is taken as the controlled system in the current paper, and the mathematical model is derived to design the multivariable controller. The performance of the controller is evaluated via simulations, and implementation and application to the MIMO system shows that the control performances are satisfactory and superior to those of the PID controller.

  • PDF

Multiobjective PI Controller Tuning of Multivariable Boiler Control System Using Immune Algorithm

  • Kim, Dong-Hwa;Park, Jin-Ill
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.78-86
    • /
    • 2003
  • Multivariable control system exist widely in many types of systems such as chemical processes, biomedical processes, and the main steam temperature control system of the thermal power plant. Up to the present time, Pill Controllers have been used to operate these systems. However, it is very difficult to achieve an optimal PID gain with no experience, because of the interaction between loops and gain of the Pill controller has to be manually tuned by trial and error. This paper suggests a tuning method of the Pill Controller for the multivariable power plant using an immune algorithm, through computer simulation. Tuning results by immune algorithms based neural network are compared with the results of genetic algorithm.

Adaptive Control of a Multivariable System Using $\mu$-Computer (마이크로콤퓨터를 이용한 다변수 시스템의 적응제어에 관한 연구)

  • Kim, Young-Key;Bien, Zeungnam
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.16 no.5
    • /
    • pp.27-33
    • /
    • 1979
  • It is reported that a typical multivariable system of chemical process type was constructed and control experiment was conducted using a $\mu$-computer instead of using conventional hardwave controller. When the pressure of water to be supplied to the multivariable system is varying, an adaptive control method using a flowmeter is suggested to enhance the control performance.

  • PDF

Constrained multivariable model based predictive control application to nonlinear boiler system (제약조건을 갖는 다변수 모델 예측 제어기의 비선형 보일러 시스템에 대한 적용)

  • 손원기;이명의;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.160-163
    • /
    • 1996
  • This paper deals with MCMBPC(Multivariable Constrained Model Based Predictive Controller) for nonlinear boiler system with noise and disturbance. MCMBPC is designed by linear state space model obtained from some operating point of nonlinear boiler system and Kalman filter is used to estimate the state with noise and disturbance. The solution of optimization of the cost function constrained on input and/or output variables is achieved using quadratic programming, viz. singular value decomposition (SVD). The controller designed is shown to have excellent tracking performance via simulation applied to nonlinear dynamic drum boiler turbine model for 16OMW unit.

  • PDF

A study on the robust control of the boiler-turbine (보일러 터빈 시스템의 견실성에 관한연구)

  • 이시곤;김은기;권욱현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.192-196
    • /
    • 1988
  • This paper presents a feasibility study related to the design of a linear multivariable compensator for a model of boiler-turbine system. The nonlinear dynamics are linearized at a operating condition. At the operating point an LQG/LTR compensator is designed. Simulations are included to illustrate the usefulness of this linear multivariable control law.

  • PDF

Modeling and Multivariable Control of a Novel Multi-Dimensional Levitated Stage with High Precision

  • Hu Tiejun;Kim Won-jong
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • This paper presents the modeling and multivariable feedback control of a novel high-precision multi-dimensional positioning stage. This integrated 6-degree-of-freedom. (DOF) motion stage is levitated by three aerostatic bearings and actuated by 3 three-phase synchronous permanent-magnet planar motors (SPMPMs). It can generate all 6-DOF motions with only a single moving part. With the DQ decomposition theory, this positioning stage is modeled as a multi-input multi-output (MIMO) electromechanical system with six inputs (currents) and six outputs (displacements). To achieve high-precision positioning capability, discrete-time integrator-augmented linear-quadratic-regulator (LQR) and reduced-order linearquadratic-Gaussian (LQG) control methodologies are applied. Digital multivariable controllers are designed and implemented on the positioning system, and experimental results are also presented in this paper to demonstrate the stage's dynamic performance.

Application of CDM to MIMO Systems: Control of Hot Rolling Mill

  • Kim, Young-Chol;Hur, Myung-Jun
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.250-256
    • /
    • 2001
  • This paper deals with a design problem of a decentralized controller with a strongly connected two-input two-output multivariable system. To this end, we present a classical design approach which consists of two main steps: one is to decompose the multivariable plant into two single-input single-output systems by means of the Individual Channel Design (ICD) concept, the other is to design controller of each channel by the Coefficient Diagram Method (CDM) so that it satisfies, especially, time domain specifications such as settling time, overshoot etc.. A design procedure was proposed and then was applied to a 2$\times$2 hot rolling mill plant. Simulation results showed that the proposed method has excellent control performances.

  • PDF

Design of the Position Control System for a Nonlinear Multivariable Launcher (비선형 다변수 발사대의 위치 제어시스템 설계)

  • Kim, Jong-Shik;Han, Seong-Ik;Sim, Woo-Jeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.4
    • /
    • pp.154-166
    • /
    • 1992
  • A kinematic nonlinear multivariable launcher is modeled of which the azimuth and elevation axes are drived simultaneously and position control systems are designed for this system by the PD and LQG/LTR control methods. Also, the suitable command input fonction is suggested for the desired command following performance and the two control systems with disturbances and load variation are evaluated for the entire operating range by computer simulation. It is found that the two linear controllers can be used for the kinematic nonlinear multivariable launcher in the entire operating range and LQG/LTR controller is more effective for disturbance rejection.

  • PDF

Multivariable State Feedback Control for Three-Phase Power Conversion systems (3상 전력변환 시스템을 위한 다변수 상태궤환 제어)

  • 이동춘;이지명
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 1997
  • In this paper, a novel multivariable state feedback control with feedforward control is proposed to improve control performance of power conversion systems. The targets of the application are three-phase voltage-source PWM converter and inverter system, and current-source PWM converter and inverter system, of which equivalent circuits and models are derived and analyzed. Various simulation results are presented to verify the validity of the proposed scheme.

  • PDF