• Title/Summary/Keyword: multiuser

Search Result 387, Processing Time 0.021 seconds

Blind MOE-PIC Multiuser Detector for Multicarrier DS-CDMA Systems (다중 반송파 DS-CDMA 시스템을 위한 블라인드 MOE-PIC 다중사용자 검출기)

  • Woo Dae ho;Lee Seung yong;Byun Youn shik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.3C
    • /
    • pp.153-157
    • /
    • 2005
  • Frequency selective fading occurs due to the Doppler Effect in mobile communication systems. The performances of the systems are rapidly reduced due to effect of multiuser interference under frequency selective channels at DS-CDMA systems. To overcome these problems, we adopted the multi-carrier modulation techniques, and it is able to solve the frequency selective channel effects by means of these modulation techniques, and interference problems due to multiuser access are solved by means of multiuser detection techniques. In this paper, we proposed the blind MOE/PIC multiuser detection method which is composed of both the blind multiuser detection technique and parallel interference canceller. Thus, simulation results show that the proposed method performs better than conventional methods.

RBF-Based Multiuser Detection for a Multirate DS/CDMA System

  • Kim, Jin-Young;Ph.D.
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.509-512
    • /
    • 2000
  • In this paper, the RBF-based multiuser detector (MUD) is proposed for a multirate DS/CDMA system. The performance of RBF-based MUD is compared with that of many suboptimal multiuser detectors in terms of bit error probability. From the simulation results, it is confirmed that the RBF-based multiuser detector outperforms decorrelating detector, and achieves near-optimum performance in several situations. The results in this paper can be applied to design of MUD fur a multirate DS/CDMA system.

  • PDF

Hybrid SNR-Adaptive Multiuser Detectors for SDMA-OFDM Systems

  • Yesilyurt, Ugur;Ertug, Ozgur
    • ETRI Journal
    • /
    • v.40 no.2
    • /
    • pp.218-226
    • /
    • 2018
  • Multiuser detection (MUD) and channel estimation techniques in space-division multiple-access aided orthogonal frequency-division multiplexing systems recently has received intensive interest in receiver design technologies. The maximum likelihood (ML) MUD that provides optimal performance has the cost of a dramatically increased computational complexity. The minimum mean-squared error (MMSE) MUD exhibits poor performance, although it achieves lower computational complexity. With almost the same complexity, an MMSE with successive interference cancellation (SIC) scheme achieves a better bit error rate performance than a linear MMSE multiuser detector. In this paper, hybrid ML-MMSE with SIC adaptive multiuser detection based on the joint channel estimation method is suggested for signal detection. The simulation results show that the proposed method achieves good performance close to the optimal ML performance at low SNR values and a low computational complexity at high SNR values.

Linear Suppression of Intercarrier Interference in Time-Varying OFDM Systems: From the Viewpoint of Multiuser Detection

  • Li, Husheng
    • Journal of Communications and Networks
    • /
    • v.12 no.6
    • /
    • pp.605-615
    • /
    • 2010
  • Intercarrier interference (ICI) in orthogonal frequency division multiplexing (OFDM) systems, which causes substantial performance degradation in time-varying fading channels, is analyzed. An equivalent spreading code formulation is derived based on the analogy of OFDM and code division multiple access (CDMA) systems. Techniques as linear multiuser detection in CDMA systems are applied to suppress the ICI in OFDM systems. The performance of linear detection, measured using multiuser efficiency and asymptotic multiuser efficiency, is analyzed given the assumption of perfect channel state information (CSI), which serves as an upper bound for the performance of practical systems. For systems without CSI, time domain and frequency domain channel estimation based linear detectors are proposed. The performance gains and robustness of a linear minimum mean square error (LMMSE) filter over a traditional filter (TF) and matched filter (MF) in the high signal-to-noise ratio (SNR) regime are demonstrated with numerical simulation results.

Decision-feedback Blind Adaptive Multiuser Detector For Synchronous CDMA System (CDMA를 위한 결정 궤환 블라인드 적응 다중 사용자 검출기)

  • 변건식;김성곤;김재수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.3B
    • /
    • pp.220-225
    • /
    • 2002
  • MUD(Multiuser detection) technology which locates desired signal and removes interference signal from multiple access signals increases system capacity and decreases multiple access effect. In this paper, we develop a blind adaptive multiuser detector for synchronous CDMA with a noise-whitened filter. To improve the symbol error probability performance, DFBD (Decision-Feedback Blind Adaptive Multiuser Detector) is proposed and compared with BD(Blind Adaptive Multiuser Detector). The proposed DFBD is slightly improved.

Blind Adaptive Multiuser Detection for the MC-CDMA Systems Using Orthogonalized Subspace Tracking

  • Ali, Imran;Kim, Doug-Nyun;Lim, Jong-Soo
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.193-200
    • /
    • 2009
  • In this paper, we study the performance of subspace-based multiuser detection techniques for multicarrier code-division multiple access (MC-CDMA) systems. We propose an improvement in the PASTd algorithm by cascading it with the classical Gram-Schmidt procedure to orthonormalize the eigenvectors after their sequential extraction. The tracking of signal subspace using this algorithm, which we call OPASTd, has a faster convergence as the eigenvectors are orthonormalized at each discrete time sample. This improved PASTd algorithm is then used to implement the subspace blind adaptive multiuser detection for MC-CDMA. We also show that, for multiuser detection, the complexity of the proposed scheme is lower than that of many other orthogonalization schemes found in the literature. Extensive simulation results are presented and discussed to demonstrate the performance of the proposed scheme.

  • PDF

Application of Genetic Algorithm for Large-Scale Multiuser MIMO Detection with Non-Gaussian Noise

  • Ran, Rong
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.2
    • /
    • pp.73-78
    • /
    • 2022
  • Based on experimental measurements conducted on many different practical wireless communication systems, ambient noise has been shown to be decidedly non-Gaussian owing to impulsive phenomena. However, most multiuser detection techniques proposed thus far have considered Gaussian noise only. They may therefore suffer from a considerable performance loss in the presence of impulsive ambient noise. In this paper, we consider a large-scale multiuser multiple-input multiple-output system in the presence of non-Gaussian noise and propose a genetic algorithm (GA) based detector for large-dimensional multiuser signal detection. The proposed algorithm is more robust than linear multi-user detectors for non-Gaussian noise because it uses a multi-directional search to manipulate and maintain a population of potential solutions. Meanwhile, the proposed GA-based algorithm has a comparable complexity because it does not require any complicated computations (e.g., a matrix inverse or derivation). The simulation results show that the GA offers a performance gain over the linear minimum mean square error algorithm for both non-Gaussian and Gaussian noise.

Multiuser Heterogeneous-SNR MIMO Systems

  • Jo, Han-Shin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2607-2625
    • /
    • 2014
  • Previous studies on multiuser multiple-input multiple-output (MIMO) mostly assume a homogeneous signal-to-noise ratio (SNR), where each user has the same average SNR. However, real networks are more likely to feature heterogeneous SNRs (a random-valued average SNR). Motivated by this fact, we analyze a multiuser MIMO downlink with a zero-forcing (ZF) receiver in a heterogeneous SNR environment. A transmitter with Mantennas constructs M orthonormal beams and performs the SNR-based proportional fairness (S-PF) scheduling where data are transmitted to users each with the highest ratio of the SNR to the average SNR per beam. We develop a new analytical expression for the sum throughput of the multiuser MIMO system. Furthermore, simply modifying the expression provides the sum throughput for important special cases such as homogeneous SNR, max-rate scheduling, or high SNR. From the analysis, we obtain new insights (lemmas): i) S-PF scheduling maximizes the sum throughput in the homogeneous SNR and ii) under high SNR and a large number of users, S-PF scheduling yields the same multiuser diversity for both heterogeneous SNRs and homogeneous SNRs. Numerical simulation shows the interesting result that the sum throughput is not always proportional to M for a small number of users.

Mixed LMSF Blind Multiuser Detector for DS-CDMA Systems (DS-CDMA 시스템을 위한 혼합 LMSF 블라인드 다중 사용자 검출)

  • Park, Sung-Wook;Park, Jong-Wook
    • 전자공학회논문지 IE
    • /
    • v.43 no.2
    • /
    • pp.75-79
    • /
    • 2006
  • Blind techniques without the help of training sequences are able to detect the information signal which has the minimal information of desired user. In this paper, we proposed the blind multiuser detector using the hybrid cost function to cancel the multiple user interference in direct sequence code division multiple access systems. The cost function of proposed blind multiuser detector is the hybrid type which joints both least mean square(LMS) algorithm and least mean fourth(LMF) algorithm. We evaluate the bit error rate(BER) performance of proposed blind multiuser detector under additive white Gaussian noise channel. Simulation results show that the proposed blind detector has an about 3dB of signal to noise ratio more than blind minimum output energy(MOE) multiuser detector under existing active user 20.

Multiuser Detection Using Hopfield Neural Network Algorithm in Multi-rate CDMA Communications (멀티 레이트 CDMA환경에서의 홉필드 신경망 알고리즘을 이용한 다중 사용자 검출기법)

  • 주양익;김용석;고한석;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.3B
    • /
    • pp.188-195
    • /
    • 2002
  • In this paper, we consider efficient multiuser receiver structures using Hopfield neural network algorithm focused to construct a synchronous multi-rate code division multiple access (CDMA) system. Although the optimum receiver for multiuser detection can be realized attaining the best BER performance, it is too complex for practical implementation. Therefore, we propose near-optimal receivers of relatively low computationally complex multiuser detection structures for realizing multi-rate CDMA system and their performances are compared with conventional matched filter and other prominent multi-rate multiuser detectors, Computer simulations show that the Hopfield neural network based multiuser receiver achieves substantially better BER performance in Rayleigh fading environments.