A low cost personal computer and image processing S/W were empolyed to derive Digtal Elevation Model(DEM) of tidal flat from multitemporal LANDSAT TM images, and to create three-dimensional(3D) perspective views of the tidel flat on Komso bay in west coasts of Korea. The method for generation of Digital Elevation Model(DEM) in tidal flat was considered by overlapping techniques of multitemporal LANDSAT TM images and interpolations. The boundary maps of tidal flat extracted from multitemporal images with different water high were digitally combined in x, y, z space with tide in formation and used as an inputcontour data to obtain an elevation model by interpolation using spline function. Elevation errors of less than $\pm$0.1m were achived using overlapping techniques and a spline interpolation approach, respectively. The derived DEM allows for the generation of a perspective grid and drape on the satellite image values to create a realistic terrain visualization model so that the tidal flat may be viewed from and desired direction. As the result of this study, we obtained elevation model of tidal flats which contribute to characterize of topography and monitoring of morphological evolution of tidal flats. Moreover, the modal generated here can be used for simulation of innudation according to tide and support other studies as a supplementary data set.
It is often crucial to obtain a map of flood inundated area with more accurate and rapid manner. This study attempts to evaluate the potential of satellite synthetic aperture radar (SAR) data for mapping of flood inundated area in Imjin river basin. Multitemporal RADARSAT SAR data of three different dates were obtained at the time of flooding on August 4 and before and after the flooding. Once the data sets were geometrically corrected and preprocessed, the temporal characteristics of relative radar backscattering were analyzed. By comparing the radar backscattering of several surface features, it was clear that the flooded rice paddy showed the distinctive temporal pattern of radar response. Flooded rice paddy showed significantly lower radar signal while the normally growing rice paddy show high radar returns, which also could be easily interpreted from the color composite imagery. In addition to delineating the flooded rice fields, the multitemporal radar imagery also allow us to distinguish the afterward condition of once-flooded rice field.
KSCE Journal of Civil and Environmental Engineering Research
/
v.28
no.4D
/
pp.569-577
/
2008
The purpose of this study is focused on the development of compound classification process by mixing multitemporal data and annexing a specific image enhancement technique with a specific image classification algorithm, to gain more accurate land information from satellite imagery. That is, this study suggests the classification process using canonical correlation classification technique after principal component analysis for the mixed multitemporal data. The result of this proposed classification process is compared with the canonical correlation classification result of one date images, multitemporal imagery and a mixed image after principal component analysis for one date images. The satellite images which are used are the Landsat 5 TM images acquired on July 26, 1994 and September 1, 1996. Ground truth data for accuracy assessment is obtained from topographic map and aerial photograph, and all of the study area is used for accuracy assessment. The proposed compound classification process showed superior efficiency to appling canonical correlation classification technique for only one date image in classification accuracy by 8.2%. Especially, it was valid in classifying mixed urban area correctly. Conclusively, to improve the classification accuracy when extracting land cover information using Landsat TM image, appling canonical correlation classification technique after principal component analysis for multitemporal imagery is very useful.
Multitemporal approaches using sequential data acquired over multiple years are essential for satisfactory discrimination between many land cover classes whose signatures exhibit seasonal trends. At any particular time, the response of several classes may be indistinguishable. Using the estimates of periodogram which are obtained from sequential images, the periodicity of the process have been incorporates into multitemporal classification. The Normalized Difference Vegetation Index (NDVI) was computed for seven-day composites of the Advanced Very High Resolution Radiometer (AVHRR) imagery over the Korean peninsula for 1996 - 2000 using a dynamic technique.
Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
/
2004.11a
/
pp.203-210
/
2004
The average temperatures by the land cover class, by the elevation extent, by the slope and by the aspect have been calculated using multitemporal Landsat TM band 6 and DEM. For this, the TM band 6 data from October 21, 1985, June 2, 1992, September 1, 1996, May 7, 2000 and the 28.5m x 28.5m grid elevation data of Seoul have been used. From the varying curve of the average land surface temperature by the elevation extent, the presence of the atmospheric inversion phenomenon and the scope of the inversion layer can be inferred. Especially, the average land surface temperature by the aspect can be effective for deciding a road line. For these reasons, it is expected that temperature estimation using remote sensing data shall be effective for the survey of heat damage, environmental temperature monitoring, and urban and environmental Planning usage.
It is very important to monitor change of a forest. We compare the different seasonal remote sensing data to detect forest damaged by typhoons and build a method to detect the area damaged by typhoons. Study site is located in western Oita prefecture. The multitemporal satellite dataset of this study were consisted of four Landsat TM scenes taken before and after the typhoons. As compared with non-damaged area, it was shown that the reflective characteristic of the damaged area becomes high by band 3, band 5, and band 7. These bands are effective in extracting the typhoon damaged area.
The forest conditions of North Korea has been a great concern since it was known to be closely related to many environmental problems of the disastrous flooding, soil erosion, and food shortage. To assess the long-term changes of forest area as well as the canopy conditions, several sources of multitemporal satellite data were applied to the study area near Kaesung. KOMPSAT-1 EOC data were overlaid with 1981 topographic map showing the boundaries of forest to assess the deforestation area. Delineation of the cleared forest was performed by both visual interpretation and unsupervised classification. For analyzing the change of forest canopy condition, multiple scenes of Landsat and SPOT data were selected. After preprocessing of the multitemporal satellite data, such as image registration and normalization, the normalized difference vegetation index (NDVI) was derived as a representation of forest canopy conditions. Although the panchromatic EOC data had radiometric limitation to classify diverse cover types, they can be effectively used t detect and delineate the deforested area. The results showed that a large portion of forest land has been cleared for the urban and agricultural uses during the last twenty years. It was also found that the canopy condition of remaining forests has not been improved for the last twenty years. It was also found that the canopy condition of remaining forests has not been improved for the last twenty years. Possible causes of the deforestation and the temporal pattern of canopy conditions are discussed.
Remotely sensed data have been used in various fields, such as disasters, agriculture, urban planning, and the military. Recently, the demand for the multitemporal dataset with the high-spatial-resolution has increased. This manuscript proposed an automatic image matching algorithm using a deep learning technique to utilize a multitemporal remotely sensed dataset. The proposed deep learning model was based on High Resolution Net (HRNet), widely used in image segmentation. In this manuscript, denseblock was added to calculate the correlation map between images effectively and to increase learning efficiency. The training of the proposed model was performed using the multitemporal orthophotos of the National Geographic Information Institute (NGII). In order to evaluate the performance of image matching using a deep learning model, a comparative evaluation was performed. As a result of the experiment, the average horizontal error of the proposed algorithm based on 80% of the image matching rate was 3 pixels. At the same time, that of the Zero Normalized Cross-Correlation (ZNCC) was 25 pixels. In particular, it was confirmed that the proposed method is effective even in mountainous and farmland areas where the image changes according to vegetation growth. Therefore, it is expected that the proposed deep learning algorithm can perform relative image registration and image matching of a multitemporal remote sensed dataset.
Journal of the Korea Academia-Industrial cooperation Society
/
v.18
no.9
/
pp.24-33
/
2017
Multitemporal MODIS vegetation index (VI) data are widely used in vegetation monitoring research into environmental and climate change, since they provide a profile of vegetation activity. However, MODIS data inevitably contain disturbances caused by the presence of clouds, atmospheric variability, and instrument problems, which impede the analysis of the NDVI time series data and limit its application utility. For this reason, preprocessing to reduce the noise and reconstruct high-quality temporal data streams is required for VI analysis. In this study, a data reconstruction method for MODIS NDVI is proposed to restore bad or missing data based on the statistical properties of the oscillations in the NDVI temporal dynamics. The first derivatives enable us to examine the monotonic properties of a function in the data stream and to detect anomalous changes, such as sudden spikes and drops. In this approach, only noisy data are corrected, while the other data are left intact to preserve the detailed temporal dynamics for further VI analysis. The proposed method was successfully tested and evaluated with simulated data and NDVI time series data covering Baekdu Mountain, located in the northern part of North Korea, over the period of interest from 2006 to 2012. The results show that it can be effectively employed as a preprocessing method for data reconstruction in MODIS NDVI analysis.
Multitemporal analysis with remotely sensed data is complicated by numerous intervening factors, including atmospheric attenuation and occurrence of clouds that obscure the relationship between ground and satellite observed spectral measurements. A reconstruction system was developed to increase the discrimination capability for imagery that has been modified by residual dffects resulting from imperfect sensing of the target and by atmospheric attenuation of the signal. Utilizing temporal information based on an adaptive timporal filter, it recovers missing measurements resulting from cloud cover and sensor noise and enhances the imagery. The temporal filter effectively tracks a systematic trend in remote sensing data by using a polynomial model. The reconstruction system were applied to the AVHRR data collected over Korean Peninsula. The results show that missing measurements are typically recovered successfully and the temporal trend in vegetation change is exposed clearly in the reconstructed series.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.