• Title/Summary/Keyword: multitemporal data

Search Result 30, Processing Time 0.032 seconds

The Generation of a Digital Elevatio Model in Tidal Flat Using Multitemporal Satellite Data (다시기 위성자료에 의한 조간대 수치지형모델의 작성)

  • 安忠鉉;梶原康司;建石降太郞;劉洪龍
    • Korean Journal of Remote Sensing
    • /
    • v.8 no.2
    • /
    • pp.131-145
    • /
    • 1992
  • A low cost personal computer and image processing S/W were empolyed to derive Digtal Elevation Model(DEM) of tidal flat from multitemporal LANDSAT TM images, and to create three-dimensional(3D) perspective views of the tidel flat on Komso bay in west coasts of Korea. The method for generation of Digital Elevation Model(DEM) in tidal flat was considered by overlapping techniques of multitemporal LANDSAT TM images and interpolations. The boundary maps of tidal flat extracted from multitemporal images with different water high were digitally combined in x, y, z space with tide in formation and used as an inputcontour data to obtain an elevation model by interpolation using spline function. Elevation errors of less than $\pm$0.1m were achived using overlapping techniques and a spline interpolation approach, respectively. The derived DEM allows for the generation of a perspective grid and drape on the satellite image values to create a realistic terrain visualization model so that the tidal flat may be viewed from and desired direction. As the result of this study, we obtained elevation model of tidal flats which contribute to characterize of topography and monitoring of morphological evolution of tidal flats. Moreover, the modal generated here can be used for simulation of innudation according to tide and support other studies as a supplementary data set.

Analysis of Flood Inundated Area Using Multitemporal Satellite Synthetic Aperture Radar (SAR) Imagery (시계열 위성레이더 영상을 이용한 침수지 조사)

  • Lee, Gyu-Seong;Kim, Yang-Su;Lee, Seon-Il
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.4
    • /
    • pp.427-435
    • /
    • 2000
  • It is often crucial to obtain a map of flood inundated area with more accurate and rapid manner. This study attempts to evaluate the potential of satellite synthetic aperture radar (SAR) data for mapping of flood inundated area in Imjin river basin. Multitemporal RADARSAT SAR data of three different dates were obtained at the time of flooding on August 4 and before and after the flooding. Once the data sets were geometrically corrected and preprocessed, the temporal characteristics of relative radar backscattering were analyzed. By comparing the radar backscattering of several surface features, it was clear that the flooded rice paddy showed the distinctive temporal pattern of radar response. Flooded rice paddy showed significantly lower radar signal while the normally growing rice paddy show high radar returns, which also could be easily interpreted from the color composite imagery. In addition to delineating the flooded rice fields, the multitemporal radar imagery also allow us to distinguish the afterward condition of once-flooded rice field.

  • PDF

Development of a Compound Classification Process for Improving the Correctness of Land Information Analysis in Satellite Imagery - Using Principal Component Analysis, Canonical Correlation Classification Algorithm and Multitemporal Imagery - (위성영상의 토지정보 분석정확도 향상을 위한 응용체계의 개발 - 다중시기 영상과 주성분분석 및 정준상관분류 알고리즘을 이용하여 -)

  • Park, Min-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4D
    • /
    • pp.569-577
    • /
    • 2008
  • The purpose of this study is focused on the development of compound classification process by mixing multitemporal data and annexing a specific image enhancement technique with a specific image classification algorithm, to gain more accurate land information from satellite imagery. That is, this study suggests the classification process using canonical correlation classification technique after principal component analysis for the mixed multitemporal data. The result of this proposed classification process is compared with the canonical correlation classification result of one date images, multitemporal imagery and a mixed image after principal component analysis for one date images. The satellite images which are used are the Landsat 5 TM images acquired on July 26, 1994 and September 1, 1996. Ground truth data for accuracy assessment is obtained from topographic map and aerial photograph, and all of the study area is used for accuracy assessment. The proposed compound classification process showed superior efficiency to appling canonical correlation classification technique for only one date image in classification accuracy by 8.2%. Especially, it was valid in classifying mixed urban area correctly. Conclusively, to improve the classification accuracy when extracting land cover information using Landsat TM image, appling canonical correlation classification technique after principal component analysis for multitemporal imagery is very useful.

Classification with Seasonal Variability using Harmonic Components: Application for Remotely-sensed Images of Korean Peninsula

  • Lee, Sang-Hoon;Hong, Hyun-Ki
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1483-1485
    • /
    • 2003
  • Multitemporal approaches using sequential data acquired over multiple years are essential for satisfactory discrimination between many land cover classes whose signatures exhibit seasonal trends. At any particular time, the response of several classes may be indistinguishable. Using the estimates of periodogram which are obtained from sequential images, the periodicity of the process have been incorporates into multitemporal classification. The Normalized Difference Vegetation Index (NDVI) was computed for seven-day composites of the Advanced Very High Resolution Radiometer (AVHRR) imagery over the Korean peninsula for 1996 - 2000 using a dynamic technique.

  • PDF

Temperature Variation by Terrain Using Multitemporal TM Band 6 and DEM(With Seoul City Area) (다시기 TM 밴드 6와 DEM을 이용한 지형별 온도변화(서울시 영역을 대상으로))

  • 박민호
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.203-210
    • /
    • 2004
  • The average temperatures by the land cover class, by the elevation extent, by the slope and by the aspect have been calculated using multitemporal Landsat TM band 6 and DEM. For this, the TM band 6 data from October 21, 1985, June 2, 1992, September 1, 1996, May 7, 2000 and the 28.5m x 28.5m grid elevation data of Seoul have been used. From the varying curve of the average land surface temperature by the elevation extent, the presence of the atmospheric inversion phenomenon and the scope of the inversion layer can be inferred. Especially, the average land surface temperature by the aspect can be effective for deciding a road line. For these reasons, it is expected that temperature estimation using remote sensing data shall be effective for the survey of heat damage, environmental temperature monitoring, and urban and environmental Planning usage.

  • PDF

Change detection of typhoon damaged area using multitemporal Landsat/TM data

  • Kajisa, Tsuyoshi;Murakami, Takuhiko;Yoshida, Shigejiro
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.718-719
    • /
    • 2003
  • It is very important to monitor change of a forest. We compare the different seasonal remote sensing data to detect forest damaged by typhoons and build a method to detect the area damaged by typhoons. Study site is located in western Oita prefecture. The multitemporal satellite dataset of this study were consisted of four Landsat TM scenes taken before and after the typhoons. As compared with non-damaged area, it was shown that the reflective characteristic of the damaged area becomes high by band 3, band 5, and band 7. These bands are effective in extracting the typhoon damaged area.

  • PDF

Change Analysis of Forest Area and Canopy Conditions in Kaesung, North Korea Using Landsat, SPOT and KOMPSAT Data

  • Lee, Kyu-Sung;Kim, Jeong-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.4
    • /
    • pp.327-338
    • /
    • 2000
  • The forest conditions of North Korea has been a great concern since it was known to be closely related to many environmental problems of the disastrous flooding, soil erosion, and food shortage. To assess the long-term changes of forest area as well as the canopy conditions, several sources of multitemporal satellite data were applied to the study area near Kaesung. KOMPSAT-1 EOC data were overlaid with 1981 topographic map showing the boundaries of forest to assess the deforestation area. Delineation of the cleared forest was performed by both visual interpretation and unsupervised classification. For analyzing the change of forest canopy condition, multiple scenes of Landsat and SPOT data were selected. After preprocessing of the multitemporal satellite data, such as image registration and normalization, the normalized difference vegetation index (NDVI) was derived as a representation of forest canopy conditions. Although the panchromatic EOC data had radiometric limitation to classify diverse cover types, they can be effectively used t detect and delineate the deforested area. The results showed that a large portion of forest land has been cleared for the urban and agricultural uses during the last twenty years. It was also found that the canopy condition of remaining forests has not been improved for the last twenty years. It was also found that the canopy condition of remaining forests has not been improved for the last twenty years. Possible causes of the deforestation and the temporal pattern of canopy conditions are discussed.

Image Matching for Orthophotos by Using HRNet Model (HRNet 모델을 이용한 항공정사영상간 영상 매칭)

  • Seong, Seonkyeong;Choi, Jaewan
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.597-608
    • /
    • 2022
  • Remotely sensed data have been used in various fields, such as disasters, agriculture, urban planning, and the military. Recently, the demand for the multitemporal dataset with the high-spatial-resolution has increased. This manuscript proposed an automatic image matching algorithm using a deep learning technique to utilize a multitemporal remotely sensed dataset. The proposed deep learning model was based on High Resolution Net (HRNet), widely used in image segmentation. In this manuscript, denseblock was added to calculate the correlation map between images effectively and to increase learning efficiency. The training of the proposed model was performed using the multitemporal orthophotos of the National Geographic Information Institute (NGII). In order to evaluate the performance of image matching using a deep learning model, a comparative evaluation was performed. As a result of the experiment, the average horizontal error of the proposed algorithm based on 80% of the image matching rate was 3 pixels. At the same time, that of the Zero Normalized Cross-Correlation (ZNCC) was 25 pixels. In particular, it was confirmed that the proposed method is effective even in mountainous and farmland areas where the image changes according to vegetation growth. Therefore, it is expected that the proposed deep learning algorithm can perform relative image registration and image matching of a multitemporal remote sensed dataset.

A noise reduction method for MODIS NDVI time series data based on statistical properties of NDVI temporal dynamics (MODIS NDVI 시계열 자료의 통계적 특성에 기반한 NDVI 데이터 잡음 제거 방법)

  • Jung, Myunghee;Jang, Seok-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.24-33
    • /
    • 2017
  • Multitemporal MODIS vegetation index (VI) data are widely used in vegetation monitoring research into environmental and climate change, since they provide a profile of vegetation activity. However, MODIS data inevitably contain disturbances caused by the presence of clouds, atmospheric variability, and instrument problems, which impede the analysis of the NDVI time series data and limit its application utility. For this reason, preprocessing to reduce the noise and reconstruct high-quality temporal data streams is required for VI analysis. In this study, a data reconstruction method for MODIS NDVI is proposed to restore bad or missing data based on the statistical properties of the oscillations in the NDVI temporal dynamics. The first derivatives enable us to examine the monotonic properties of a function in the data stream and to detect anomalous changes, such as sudden spikes and drops. In this approach, only noisy data are corrected, while the other data are left intact to preserve the detailed temporal dynamics for further VI analysis. The proposed method was successfully tested and evaluated with simulated data and NDVI time series data covering Baekdu Mountain, located in the northern part of North Korea, over the period of interest from 2006 to 2012. The results show that it can be effectively employed as a preprocessing method for data reconstruction in MODIS NDVI analysis.

Adaptive Reconstruction Of AVHRR NVI Sequential Imagery off Korean Peninsula

  • Lee, Sang-Hoon;Kim, Kyung-Sook
    • Korean Journal of Remote Sensing
    • /
    • v.10 no.2
    • /
    • pp.63-82
    • /
    • 1994
  • Multitemporal analysis with remotely sensed data is complicated by numerous intervening factors, including atmospheric attenuation and occurrence of clouds that obscure the relationship between ground and satellite observed spectral measurements. A reconstruction system was developed to increase the discrimination capability for imagery that has been modified by residual dffects resulting from imperfect sensing of the target and by atmospheric attenuation of the signal. Utilizing temporal information based on an adaptive timporal filter, it recovers missing measurements resulting from cloud cover and sensor noise and enhances the imagery. The temporal filter effectively tracks a systematic trend in remote sensing data by using a polynomial model. The reconstruction system were applied to the AVHRR data collected over Korean Peninsula. The results show that missing measurements are typically recovered successfully and the temporal trend in vegetation change is exposed clearly in the reconstructed series.