• Title/Summary/Keyword: multiprocessor power management

Search Result 3, Processing Time 0.016 seconds

Adaptive Online Voltage Scaling Scheme Based on the Nash Bargaining Solution

  • Kim, Sung-Wook
    • ETRI Journal
    • /
    • v.33 no.3
    • /
    • pp.407-414
    • /
    • 2011
  • In an effort to reduce energy consumption, research into adaptive power management in real-time systems has become widespread. In this paper, a novel dynamic voltage scaling scheme is proposed for multiprocessor systems. Based on the concept of the Nash bargaining solution, a processor's clock speed and supply voltage are dynamically adjusted to satisfy these conflicting performance metrics. In addition, the proposed algorithm is implemented to react adaptively to the current system conditions by using an adaptive online approach. Simulation results clearly indicate that the superior performance of the proposed scheme can strike the appropriate performance balance between contradictory requirements.

Development of Simulation Tool SMPLE and Its Application to Performance Analysis of Multiprocessor Systems (시뮬레이션 도구 SMPLE의 개발 및 멀티프로세서 시스템 성능 분석에의 활용)

  • 조성만
    • Journal of the Korea Society for Simulation
    • /
    • v.1 no.1
    • /
    • pp.87-102
    • /
    • 1992
  • This paper presents the development of event-driven system level simulation tool SMPLE(Smpl Extende, an extention fo smpl) and its application to the performance analysis of multiprocessor computer systems. Because of its data structure, it is very difficult to change, expand or add new functions to simulation language smpl implemented by MacDougall. In SMPLE, we change data structure with structure and pointer, add new functions, and enable dynamic memory management. Using new data structure, facilities, and functions added in SMPLE, we simulate job processing of a shared bus multiprocessor system with autonomous hierarchical I/O subsystem. We set system performance contribution of subsystems and units. The impact of disk I/O on system performance is evaluated under vairous conditions of number of processors, processing power, memory access time and disk seek time.

  • PDF

Leakage Energy Management Techniques via Shared L2 Cache Partitioning (캐시 파티션을 이용한 공유 2차 캐시 누설 에너지 관리 기법)

  • Kang, Hee-Joon;Kim, Hyun-Hee;Kim, Ji-Hong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.1
    • /
    • pp.43-54
    • /
    • 2010
  • The existing timeout based cache leakage management techniques reduce the leakage energy consumption of the cache significantly by switching off the power supply to the inactive cache line. Since these techniques were mainly proposed for single-processor systems, their efficiency is reduced significantly in multiprocessor systems with a shared L2 cache because of the cache interferences among simultaneously executing tasks. In this paper, we propose a novel cache partition strategy which partitions the shared L2 cache considering the inactive cycles of the cache line. Furthermore, we propose the adaptive task-aware timeout management technique which considers the characteristics of each task and adapts the timeout dynamically. Experimental results from the simulation show that the proposed technique reduces the leakage energy consumption of the shared L2 cache by 73% for the 2-way CMP and 56% for the 4-way CMP on average compared to the existing representative leakage management technique, respectively.