• Title/Summary/Keyword: multiplexed optical measurement

Search Result 12, Processing Time 0.029 seconds

Multiplexed Bend Loss Type Single-Mode Fiber-Optic Displacement Sensor Using Reflection Signals Generated at Optical Connectors (광커넥터의 반사를 이용한 다중화된 굽힘 손실형 단일모드 광섬유 변위센서)

  • Yoo Jung-Ae;Jo Jae Heung;Kwon Il-Bum
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.5
    • /
    • pp.415-422
    • /
    • 2004
  • We propose and present a new multiplexed bend loss type single-mode fiber-optic sensor system for displacement measurement in order to measure the displacement of several mm of civil engineering structures such as bridges and buildings. We make a bend loss type fiber-optic sensor for measuring displacements using the signal difference between two reflection signals due to various bend losses generating at a pair of optical connectors by using the optical time domain reflectometer. And we fabricate a multiplexed bend loss type fiber-optic sensor detecting linear displacements of 4 measuring positions of an object by setting these new 4 fiber-optic sensors on a single mode fiber simultaneously. We find that the multiplexed fiber-optics displacement sensor has linearity of 0.9942, maximum displacement of 6 mm, and accuracy of 6% for 4 measuring points.

A multiplexed fiber-optic sensor for measuring large displacement (대변위 측정을 위한 다중화된 광섬유 센서)

  • Yoo, Jung-Ae;Kwon, Il-Bum;Jo, Jae-Heung;Seo, Dae-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.169-179
    • /
    • 2005
  • A multiplexed bend loss type single-mode fiber-optic sensor system was prepared to measure the displacement of several cm of the civil engineering structures such as many bridges, tunnels and various buildings. This bend loss type fiber-optic sensor used the signal difference between two reflection signals due to various bend losses generating at a pair of optical connectors by using OTDR (optical time domain reflectometer) for measuring displacements. And the experiments were conducted for showing the measurement feasibility on the range of 10 cm, and the multiplexing experiments were also performed to measure the displacements of 5 measuring positions of an object by setting these 5 fiber-optic sensors on a single mode fiber simultaneously.

Displacement Measurement by Multiplexed Optical Loss -based Fiber Optic Sensor (다중화된 광 손실형 광섬유 센서에 의한 변위의 측정)

  • 권일범;김치엽;유정애
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.556-565
    • /
    • 2003
  • Light losses in optical fibers are investigated by a fiber optic OTDR (Optical Time Domain Reflectometry) sensor system to develop fiber optic probes for structural displacement measurement. The displacement sensitivity was determined by the measurements of fiber-bending loss according to the gage length changes of the displacement sensor. The fiber optic displacement probe was manufactured to verify the feasibility of the structural displacement measurement.

  • PDF

Multiplexed Hard-Polymer-Clad Fiber Temperature Sensor Using An Optical Time-Domain Reflectometer

  • Lee, Jung-Ryul;Kim, Hyeng-Cheol
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • Optical fiber temperature sensing systems have incomparable advantages over traditional electrical-cable-based monitoring systems. However, the fiber optic interrogators and sensors have often been rejected as a temperature monitoring technology in real-world industrial applications because of high cost and over-specification. This study proposes a multiplexed fiber optic temperature monitoring sensor system using an economical Optical Time-Domain Reflectometer (OTDR) and Hard-Polymer-Clad Fiber (HPCF). HPCF is a special optical fiber in which a hard polymer cladding made of fluoroacrylate acts as a protective coating for an inner silica core. An OTDR is an optical loss measurement system that provides optical loss and event distance measurement in real time. A temperature sensor array with the five sensor nodes at 10-m interval was economically and quickly made by locally stripping HPCF clad through photo-thermal and photo-chemical processes using a continuous/pulse hybrid-mode laser. The exposed cores created backscattering signals in the OTDR attenuation trace. It was demonstrated that the backscattering peaks were independently sensitive to temperature variation. Since the 1.5-mm-long exposed core showed a 5-m-wide backscattering peak, the OTDR with a spatial resolution of 40 mm allows for making a sensor node at every 5 m for independent multiplexing. The performance of the sensor node included an operating range of up to $120^{\circ}C$, a resolution of $0.59^{\circ}C$, and a temperature sensitivity of $-0.00967dB/^{\circ}C$. Temperature monitoring errors in the environment tests stood at $0.76^{\circ}C$ and $0.36^{\circ}C$ under the temperature variation of the unstrapped fiber region and the vibration of the sensor node. The small sensitivities to the environment and the economic feasibility of the highly multiplexed HPCF temperature monitoring sensor system will be important advantages for use as system-integrated temperature sensors.

On-site water level measurement method based on wavelength division multiplexing for harsh environments in nuclear power plants

  • Lee, Hoon-Keun;Choo, Jaeyul;Shin, Gangsig;Kim, Sung-Man
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2847-2851
    • /
    • 2020
  • A simple water level measurement method based on wavelength division multiplexing (WDM) is proposed and demonstrated. The measurement principle is based on the change of Fresnel reflection occurring at the end facet of the optical fiber tip (OFT). To increase the spatial resolution of water level sensing, a broadband light source (BLS) and an arrayed waveguide grating (AWG) are employed. The OFTs are multiplexed with the dedicated wavelength channels of AWG. By measuring all of the reflection powers reflected at the OFTs with a proposed on-site reflectometer, the water level can be monitored continuously for a fast emergency response. Moreover, it can be implemented easily with the commercially available optical components and devices with the simple configuration.

Development of Dual Beam High Speed Doppler OFDI

  • Kim, SunHee;Park, TaeJin;Oh, Wang-Yuhl
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.3
    • /
    • pp.283-288
    • /
    • 2013
  • This paper describes development of a high speed Doppler OFDI system for non-invasive vascular imaging. Doppler OFDI (optical frequency domain imaging) is one of the phase-resolved second generation OCT (optical coherence tomography) techniques for high resolution imaging of moving elements in biological tissues. To achieve a phase-resolved imaging, two temporally separated measurements are required. In a conventional Doppler OCT, a pair of massively oversampled successive A-lines is used to minimize de-correlation noise at the expense of significant imaging speed reduction. To minimize a de-correlation noise between targeted two measurements without suffering from significant imaging speed reduction, several methods have been developed such as an optimized scanning pattern and polarization multiplexed dual beam scanning. This research represent novel imaging technique using frequency multiplexed dual beam illumination to measure exactly same position with aimed time interval. Developed system has been verified using a tissue phantom and mouse vessel imaging.

Multiplexed fabry-perot interferometric sensor system (다중화 Fabry-Perot 간섭형 광섬유 센서 시스템)

  • 나도성;예윤해;이동영;박광순
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.4
    • /
    • pp.273-278
    • /
    • 1999
  • A TDM-multiplexed fiber optic pressure/temperature sensor system utilizing fiber optic Fabry-Perot interferometers as sensing devices was developed and applied to measure water level variations and temperature variations. The maximum measurement speed of the system without saving measurement data is 4500 times per second and the response time of the sensors is thought to be ~ms. The difference between the theoretical value and the measured value for the scale factor of water level sensor and temperature sensor was +13.7%, -18% respectively. The nonlinearity of the sensors after calibration was less than 1%. The sensor system was applied to verify the capability of measuring the temperature variations and water level variations at a high speed.

  • PDF

Investigation of smart multifunctional optical sensor platform and its application in optical sensor networks

  • Pang, C.;Yu, M.;Gupta, A.K.;Bryden, K.M.
    • Smart Structures and Systems
    • /
    • v.12 no.1
    • /
    • pp.23-39
    • /
    • 2013
  • In this article, a smart multifunctional optical system-on-a-chip (SOC) sensor platform is presented and its application for fiber Bragg grating (FBG) sensor interrogation in optical sensor networks is investigated. The smart SOC sensor platform consists of a superluminescent diode as a broadband source, a tunable microelectromechanical system (MEMS) based Fabry-P$\acute{e}$rot filter, photodetectors, and an integrated microcontroller for data acquisition, processing, and communication. Integrated with a wireless sensor network (WSN) module in a compact package, a smart optical sensor node is developed. The smart multifunctional sensor platform has the capability of interrogating different types of optical fiber sensors, including Fabry-P$\acute{e}$rot sensors and Bragg grating sensors. As a case study, the smart optical sensor platform is demonstrated to interrogate multiplexed FBG strain sensors. A time domain signal processing method is used to obtain the Bragg wavelength shift of two FBG strain sensors through sweeping the MEMS tunable Fabry-P$\acute{e}$rot filter. A tuning range of 46 nm and a tuning speed of 10 Hz are achieved. The smart optical sensor platform will open doors to many applications that require high performance optical WSNs.

A Probe of Fiber Optic OTDR Displacement Sensor (광섬유 OTDR변위 센서의 탐촉자)

  • Kwon, Il-Bum;Kim, Chi-Yeop;Seo, Dae-Cheol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.350-355
    • /
    • 2005
  • The probes of fiber optic OTDR (Optical Time Domain Reflectometry) sensor was developed to measure displacements of social infrastructures. This probe was simply constructed with two conventional optical fiber connectors, and a fiber bending part, which transforms displacement to optical loss. When the displacement was affected on the bending loss part, the reflected light intensity of one optical connector was changed. The displacement was determined from this reflected light intensity change of the connector. fiber optic OTDR displacement sensor was developed as the multiplexed type of one fiber line with 5 sensor probes. Multiplexing operation was tested by these 5 sensor probes.