• 제목/요약/키워드: multiple-resistance gene

검색결과 98건 처리시간 0.029초

양식 굴(Crassostrea gigas)에서 분리된 장염비브리오균의 독소 유전자 보유 및 항균제 감수성 (Virulence Factors and Antimicrobial Susceptibility of Vibrio parahaemolyticus Isolated from the Oyster Crassostrea gigas)

  • 김수경;안세라;박보미;오은경;송기철;김정완;유홍식
    • 한국수산과학회지
    • /
    • 제49권2호
    • /
    • pp.116-123
    • /
    • 2016
  • This study investigated the prevalence of Vibrio parahaemolyticus in the oyster Crassostrea gigas, which is commonly consumed raw. The presence of virulence factors and the antimicrobial susceptibility of isolates were also investigated. The overall prevalence rate of V. parahaemolyticus in oysters was 37.5% (36/96) and the range of concentrations was 30-11,000 MPN/100 g. PCR-based assays indicated that 9.6% (11/115) of the isolates were positive for the thermostable direct hemolysin-related hemolysin gene (trh), while none of the isolates were positive for the thermostable direct hemolysin gene (tdh). The Multiple Antibiotics Resistance (MAR) index was measured for 16 common antimicrobial agents and 46.1% (53/115) of the isolates had a MAR index > 0.2. The MAR index ranged from 0.07 to 0.73. The highest MAR index was observed with strain s150608, isolated in June 2015, which exhibited resistance to 11 antimicrobial agents. Our results demonstrate that oysters are high-risk sources of V. parahaemolyticus, although no antimicrobial agent was being used to promote growth or to treat bacterial infections in the sampled oyster-growing areas.

Isolation and Characterization of Transcriptional Elements from Corynebacterium glutamicum

  • Park, Soo-Dong;Lee, Sang-Nam;Park, Ik-Hyun;Choi, Jong-Su;Jeong, Wol-Kyu;Kim, Youn-Hee;Lee, Heung-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권4호
    • /
    • pp.789-795
    • /
    • 2004
  • A promoter-probe shuttle vector pSK1Cat was constructed for the isolation of transcriptional signal sequences from Corynebacterium glutamicum. Besides conferring resistance to kanamycin in Escherichia coli and C. glutamicum, the vector carried a promoterless cat gene to confer resistance to chloramphenicol upon insertion of the appropriate transcriptional signals in the multiple cloning site. By utilizing the vector, a series of transcriptionally active fragments were isolated from the genome of C. glutamicum. The clones, ranging from 200 bp to 1 kb in size, were grouped into 3 classes of strong, medium, and weak, based on the chloramphenicol acetyltransferase (CAT) activity and sensitivity to the chloramphenicol of the clone-carrying C. glutamicum cells. C. glutamicum cells carrying the $P_{19}$ clone, a representative in the strong class, were able to grow on minimal agar plates containing over $40 mg/mell$ chloramphenicol, and showed CAT activity of 10 m㏖/mgㆍmin, performing slightly better than the cells carrying $P_{tac}$ , a strong E. coli promoter. Subcloning analysis of the $P_{19}$ clone identified a 180 bp intergenic fragment ($P_{180}$), which was located upstream of a gene encoding a hypothetical membrane protein. The expression conferred by $P_{180}$ was not affected by either the kinds of carbon sources or changes in temperature. These properties make the $P_{180}$ clone useful for the deregulated expression of biosynthetic genes in C. glutamicum during amino acid fermentation.

The Attenuation Mechanism and Live Vaccine Potential of a Low-Virulence Edwardsiella ictaluri Strain Obtained by Rifampicin Passaging Culture

  • Shuyi Wang;Jingwen Hao;Jicheng Yang;Qianqian Zhang;Aihua Li
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권2호
    • /
    • pp.167-179
    • /
    • 2023
  • The rifampicin-resistant strain E9-302 of Edwardsiella ictaluri strain 669 (WT) was generated by continuous passage on BHI agar plates containing increasing concentrations of rifampicin. E9-302 was attenuated significantly by 119 times to zebrafish Danio rerio compared to WT in terms of the 50% lethal dose (LD50). Zebrafish vaccinated with E9-302 via intraperitoneal (IP) injection at a dose of 1 × 103 CFU/fish had relative percentage survival (RPS) rates of 85.7% when challenged with wild-type E. ictaluri via IP 14 days post-vaccination (dpv). After 14 days of primary vaccination with E9-302 via immersion (IM) at a dose of 4 × 107 CFU/ml, a booster IM vaccination with E9-302 at a dose of 2 × 107 CFU/ml exhibited 65.2% RPS against challenge with wild-type E. ictaluri via IP 7 days later. These results indicated that the rifampicin-resistant attenuated strain E9-302 had potential as a live vaccine against E. ictaluri infection. A previously unreported amino acid site change at position 142 of the RNA polymerase (RNAP) β subunit encoded by the gene rpoB associated with rifampicin resistance was identified. Analysis of the whole-genome sequencing results revealed multiple missense mutations in the virulence-related genes esrB and sspH2 in E9-302 compared with WT, and a 189 bp mismatch in one gene, whose coding product was highly homologous to glycosyltransferase family 39 protein. This study preliminarily explored the molecular mechanism underlying the virulence attenuation of rifampicin-resistant strain E9-302 and provided a new target for the subsequent study of the pathogenic mechanism of E. ictaluri.

Identification of Pseudomonas aeruginosa Genes Crucial for Hydrogen Peroxide Resistance

  • Choi, Young-Seok;Shin, Dong-Ho;Chung, In-Young;Kim, Seol-Hee;Heo, Yun-Jeong;Cho, You-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권8호
    • /
    • pp.1344-1352
    • /
    • 2007
  • An opportunistic human pathogen, Pseudomonas aeruginosa, contains the major catalase KatA, which is required to cope with oxidative and osmotic stresses. As an attempt to uncover the $H_2O_2$-dependent regulatory mechanism delineating katA gene expression, four prototrophic $H_2O_2$-sensitive mutants were isolated from about 1,500 TnphoA mutant clones of P. aeruginosa strain PA14. Arbitrary PCR and direct cloning of the transposon insertion sites revealed that one insertion is located within the katA coding region and two are within the coding region of oxyR, which is responsible for transcriptional activation of several antioxidant enzyme genes in response to oxidative challenges. The fourth insertion was within PA3815 (IscR), which encodes a homolog of the Escherichia coli iron-sulfur assembly regulator, IscR. The levels of catalase and SOD activities were significantly reduced in the iscR mutant, but not in the oxyR mutant, during the normal planktonic culture conditions. These results suggest that both IscR and OxyR are required for the optimal resistance to $H_2O_2$, which involves the expression of multiple antioxidant enzymes including KatA.

Genome Profiling for Health Promoting and Disease Preventing Traits Unraveled Probiotic Potential of Bacillus clausii B106

  • Kapse, N.G.;Engineer, A.S.;Gowdaman, V.;Wagh, S.;Dhakephalkar, P.K.
    • 한국미생물·생명공학회지
    • /
    • 제46권4호
    • /
    • pp.334-345
    • /
    • 2018
  • Spore-forming Bacillus species are commercially available probiotic formulations for application in humans. They have health benefits and help prevent disease in hosts by combating entero-pathogens and ameliorating antibiotic-associated diarrhea. However, the molecular and cellular mechanisms of these benefits remain unclear. Here, we report the draft genome of a potential probiotic strain of Bacillus clausii B106. We mapped and compared the probiotic profile of B106 with other reference genomes. The draft genome analysis of B106 revealed the presence of ADI pathway genes, indicating its ability to tolerate acidic pH and bile salts. Genes encoding fibronectin binding proteins, enolase, as well as a gene cluster involved in the biosynthesis of exopolysaccharides underscored the potential of B106 to adhere to the intestinal epithelium and colonize the human gut. Genes encoding bacteriocins were also detected, indicating the antimicrobial ability of this isolate. The presence of genes encoding vitamins, including Riboflavin, Folate, and Biotin, also indicated the health-promoting ability of B106. Resistance of B106 to multiple antibiotics was evident from the presence of genes encoding resistance to chloramphenicol, ${\beta}$-lactams, Vancomycin, Tetracycline, fluoroquinolones, and aminoglycosides. The findings indicate the significance of B. clausii B106 administration during antibiotic treatment and its potential value as a probiotic strain to replenish the health-promoting and disease-preventing gut flora following antibiotic treatment.

Variability in the coat protein genes of two orchid viruses from Phlaenopsis orchids in Korea

  • Park, S.H.;H.R. Lim;G.D. Ye;K.H. Ryu
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.145.1-145
    • /
    • 2003
  • This study was conducted to designing conserved regions of molecules for virus-derived resistance to transgenic Phlaenopsis orchids to protect against two major orchid viruses, Cymbidum mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV). Infected leaf samples of Phalaenopsis were randomly screened by the RT-PCR with specific primers to both of viruses. RT-PCR products of the viruses were cloned and their nucleotide sequences were determined. Multiple alignments of coat protein (CP) genes of the viruses revealed that over the 88 % and 94 % identities with CymMV and ORSV, respectively, were observed. These data can be useful for selection of highly conserved regions of CP gene of the viruses for transgenic orchid experiments.

  • PDF

Highly Expressed Integrin-α8 Induces Epithelial to Mesenchymal Transition-Like Features in Multiple Myeloma with Early Relapse

  • Ryu, Jiyeon;Koh, Youngil;Park, Hyejoo;Kim, Dae Yoon;Kim, Dong Chan;Byun, Ja Min;Lee, Hyun Jung;Yoon, Sung-Soo
    • Molecules and Cells
    • /
    • 제39권12호
    • /
    • pp.898-908
    • /
    • 2016
  • Despite recent groundbreaking advances in multiple myeloma (MM) treatment, most MM patients ultimately experience relapse, and the relapse biology is not entirely understood. To define altered gene expression in MM relapse, gene expression profiles were examined and compared among 16 MM patients grouped by 12 months progression-free survival (PFS) after autologous stem cell transplantation. To maximize the difference between prognostic groups, patients at each end of the PFS spectrum (the four with the shortest PFS and four with the longest PFS) were chosen for additional analyses. We discovered that integrin-${\alpha}8$ (ITGA8) is highly expressed in MM patients with early relapse. The integrin family is well known to be involved in MM progression; however, the role of integrin-${\alpha}8$ is largely unknown. We functionally overexpressed integrin-${\alpha}8$ in MM cell lines, and surprisingly, stemness features including $HIF1{\alpha}$, VEGF, OCT4, and Nanog, as well as epithelial mesenchymal transition (EMT)-related phenotypes, including N-cadherin, Slug, Snail and CXCR4, were induced. These, consequently, enhanced migration and invasion abilities, which are crucial to MM pathogenesis. Moreover, the gain of integrin-${\alpha}8$ expression mediated drug resistance against melphalan and bortezomib, which are the main therapeutic agents in MM. The cBioPortal genomic database revealed that ITGA8 have significant tendency to co-occur with PDGFRA and PDGFRB and their mRNA expression were up-regulated in ITGA8 overexpressed MM cells. In summary, integrin-${\alpha}8$, which was up-regulated in MM of early relapse, mediates EMT-like phenotype, enhancing migration and invasion; therefore, it could serve as a potential marker of MM relapse and be a new therapeutic target.

콩시스트 선충 race14에 대한 저항성 유전자좌 구명 (Identification of Quantitative Trait Loci for Resistance to Soybean Cyst Nematode Race 14)

  • Choi, In-Soo;Kim, Yong-Chul
    • 생명과학회지
    • /
    • 제13권4호
    • /
    • pp.375-382
    • /
    • 2003
  • 본 연구는 콩 cyst 선충 race 14에 대한 저항성 QTLs 구명을 목적으로 한 바 결과를 요약하면 다음과 같다. 1. 회귀분석 결과 30개의 marker들(29 RAPD, 1 RFLP)에서 cyst 선충 race 14의 저항성에 대한 유의성이 인정되었다. 2. MAPMAKER/QTL 분석 결과 2개의 QTL들이 구명되었는데, 이 QTL들은 2개의 linkage groups (LGC-7와 LGC-9)에 위치하였으며, 모두 우성유전 양상을 나타내었다. 3. 다중회귀분석 결과 2개의 marker들($B15^2$$H06^1$)로 구성된 조합에서 가장 높은 표현적 변이의 값(22.9%)을 나타내었다. 콩 cyst 선충 rare 14에 대한 표현적 변이를 충분히 설명하기 위해서는 지속적인 QTL 구명 연구가 요구된다.

Cloning and Functional Characterization of Putative Escherichia coli ABC Multidrug Efflux Transporter YddA

  • Feng, Zhenyue;Liu, Defu;Liu, Ziwen;Liang, Yimin;Wang, Yanhong;Liu, Qingpeng;Liu, Zhenhua;Zang, Zhongjing;Cui, Yudong
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권7호
    • /
    • pp.982-995
    • /
    • 2020
  • A putative multidrug efflux gene, yddA, was cloned from the Escherichia coli K-12 strain. A drug-sensitive strain of E. coli missing the main multidrug efflux pump AcrB was constructed as a host and the yddA gene was knocked out in wild-type (WT) and drug-sensitive E. coliΔacrB to study the yddA function. Sensitivity to different substrates of WT E.coli, E. coliΔyddA, E. coliΔacrB and E. coliΔacrBΔyddA strains was compared with minimal inhibitory concentration (MIC) assays and fluorescence tests. MIC assay and fluorescence test results showed that YddA protein was a multidrug efflux pump that exported multiple substrates. Three inhibitors, ortho-vanadate, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and reserpine, were used in fluorescence tests. Ortho-vanadate and reserpine significantly inhibited the efflux and increased accumulation of ethidium bromide and norfloxacin, while CCCP had no significant effect on YddA-regulated efflux. The results indicated that YddA relies on energy released from ATP hydrolysis to transfer the substrates and YddA is an ABC-type multidrug exporter. Functional study of unknown ATP-binding cassette (ABC) superfamily transporters in the model organism E. coli is conducive to discovering new multidrug resistance-reversal targets and providing references for studying other ABC proteins of unknown function.

An easy and efficient protocol in the production of pflp transgenic banana against Fusarium wilt

  • Yip, Mei-Kuen;Lee, Sin-Wan;Su, Kuei-Ching;Lin, Yi-Hsien;Chen, Tai-Yang;Feng, Teng-Yung
    • Plant Biotechnology Reports
    • /
    • 제5권3호
    • /
    • pp.245-254
    • /
    • 2011
  • This study describes an efficient protocol for Agrobacterium tumefaciens-mediated transformation of two subgroups of genotype AAA bananas (Musa acuminata cv. Pei Chiao and Musa acuminata cv. Gros Michel). Instead of using suspension cells, cauliflower-like bud clumps, also known as multiple bud clumps (MBC), were induced from sucker buds on MS medium containing $N^6$-Benzylaminopurine (BA), Thidiazuron (TDZ), and Paclobutrazol (PP333). Bud slices were co-cultivated with A. tumefaciens C58C1 or EHA105 that carry a plasmid containing Arabidopsis root-type ferredoxin gene (Atfd3) and a plant ferredoxin-like protein (pflp) gene, respectively. These two strains showed differences in transformation efficiency. The EHA105 strain was more sensitive in Pei Chiao, 51.3% bud slices were pflp-transformed, and 12.6% slices were Atfd3-transformed. Gros Michel was susceptible to C58C1 and the transformation efficiency is 4.4% for pflp and 13.1% for Atfd3. Additionally, gene integration of the putative pflp was confirmed by Southern blot. Resulting from the pathogen inoculation assay, we found that the pflp transgenic banana exhibited resistance to Fusarium oxysporum f. sp. cubense tropical race 4. This protocol is highly advantageous to banana cultivars that have difficulties in setting up suspension cultures for the purpose of quality improvement through genetic transformation. In addition, this protocol would save at least 6 months in obtaining explants for transformation and reduce labor for weekly subculture in embryogenic cell suspension culture systems.