• Title/Summary/Keyword: multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM)

Search Result 75, Processing Time 0.027 seconds

MIMO-OFDM System with Insufficient Cyclic Prefix (불충분한 CP를 갖는 MIMO-OFDM 시스템)

  • Lim Jong-Bu;Choi Chan-Ho;Im Gi-Hong;Kim Ki-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.3 s.345
    • /
    • pp.10-17
    • /
    • 2006
  • For orthogonal frequency division multiplexing (OFDM), cyclic prefix (CP) should be longer than the length of channel impulse response, resulting in a loss of bandwidth efficiency. In this letter, the CP reconstruction (CPR) technique is first applied to a multi-input multi-output (MIMO)-OFDM system with insufficient CP. The intercarrier interference (ICI) from multiple transmit antennas is so large for MIMO system that it can not be sufficiently suppressed with the conventional CPR procedure used in single-input single-output (SISO) system. A new minimum mean-square error (MMSE) equalization and ordering process is proposed for MIMO system to suppress the ICI during the CPR procedure. By applying the proposed CPR algerian to MIMO-OFDM system, we can obtain both the benefits of multiplexing gai and spectral efficiency gain.

Performance Analysis for Spatial Multiplexing MIMO in MB-OFDM UWB Receivers (MB-OFDM UWB 시스템에서 공간 다중화 MIMO 수신기의 성능 분석)

  • Suh, Jung-Won;Kwon, Yang-Soo;Kim, Seok-Hyeon;Chung, Jea-Hak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2A
    • /
    • pp.121-129
    • /
    • 2008
  • This paper presents the spatial multiplexing MIMO system to increase data rate to double in MB-OFDM UWB system, which is ECMA standards, and compares BER performance of various receiver structures. The complexity and BER performance of various types of spatial multiplexing receivers are compared and analyzed using diagonal and horizontal encoding techniques for $2{\times}2$\;and\;2{\times}3$ antennas systems. Computer simulations exhibit that $2{\times}2$ MML and $2{\times}3$ ZF method show better BER performance than that of SISO system with simple complexity.

A Robust Adaptive MIMO-OFDM System Over Multipath Transmission Channels (다중경로 전송 채널 특성에 강건한 적응 MIMO-OFDM 시스템)

  • Kim, Hyun-Dong;Choe, Sang-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7A
    • /
    • pp.762-769
    • /
    • 2007
  • Adaptive MIMO-OFDM (Orthogonal Frequency Division Multiplexing) system adaptively changes modulation scheme depending on feedback channel state information (CSI). The CSI feedback channel which is the reverse link channel has multiple symbol delays including propagation delay, processing delay, frame delay, etc. The unreliable CSI due to feedback delay degrades adaptive modulation system performance. This paper compares the MSE and data capacity with respect to delay and channel signal to noise ratio for the two multi-step channel prediction schemes, CTSBP and BTSBP, such that robust adaptive SISO-OFDM/MIMO-OFDM is designed over severe mobile multipath channel conditions. This paper presents an interpolation method to reduce feedback overhead for adaptive MIMO-OFDM and shows MSE with respect to interpolation interval.

Performance of Doubly Correlated MIMO Channel in OFDM Spatial Multiplexing Systems

  • An, Jin-Young;Park, Hee-Jun;Kim, Sang-Choon
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.4
    • /
    • pp.359-363
    • /
    • 2008
  • In this paper, the capacity of MIMO fading channel in the OFDM-based spatial multiplexing systems is analyzed when there is scattering at both transmitter and receiver. The employed MIMO channel model is spanning from the correlated low-rank case to uncorrelated high-rank case at both transmitter and receiver. The effects of spatial fading correlation on the capacity of MIMO channel is examined when the channel is known and unknown at the transmitter. We also evaluate the impacts of a channel estimation error at the transmitter on the MIMO channel capacity.

A Simple AMC Technique using ARQ for a MIMO-OFDM System based on IEEE 802.11a WLANs (IEEE 802.11a WLAN 기반 MIMO-OFDM 시스템에서 ARQ를 이용한 간단한 적응변조 기법)

  • 유승연;김경연;이충용;홍대식;박현철
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.7
    • /
    • pp.1-8
    • /
    • 2004
  • A simple AMC (Adaptive Modulation and Coding) technique using ARQ (Automatic Repeat Request) for a MIMO (Multiple Input Multiple Output) system is proposed which does not require the additional feedback. In addition, the proposed AMC technique is different from the conventional technique in the aspect of considering the MCS (Modulation and Coding Scheme) level from the previous packet. The proposed technique can discard fewer amounts of unsuitable packets than the conventional technique. In the proposed system not only same rate control method for transmit antennas but also individual rate control method can be applied. The performance of the proposed technique is verified under a MIMO-OFDM (Orthogonal Frequency Division Multiplexing) system based on WLAN (Wireless Local Area Network), IEEE 802.11a. The results of the computer simulation show that a MIMO system with the proposed technique achieves higher throughput than one with a fixed transmission rate.

An Analysis of Multiuser Diversity Technology in the MIMO-OFDM System (MIMO-OFDM 시스템에서 다중사용자 다이버시티 기술의 성능분석)

  • Zhang, Ke;Suh, Hee-Jong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1121-1128
    • /
    • 2019
  • In this paper, we introduce the combination of OFDM(Orthogonal Frequency Division Multiplexing) and MIMO(Multiple-Input Multiple-Output) technology, and explain that this combination seems to be very preferable when designing very high-rate wireless mobile systems. The application of OFDM, with the block diagrams of an OFDM modulator and demodulator and a MIMO-OFDM system, are described. The several diversities are studied at the receiver, analyzed the performances of diversity in OFDM-MIMO system and simulated results.

Design of Unequal Error Protection for MIMO-OFDM Systems with Hierarchical Signal Constellations

  • Noh, Yu-Jin;Lee, Heun-Chul;Lee, Won-Jun;Lee, In-Kyu
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.167-176
    • /
    • 2007
  • In multimedia communication systems, efficient transmission system design should incorporate the use of matching unequal error protection (UEP), since source coders exhibit unequal bit error sensitivity. In this paper, we present UEP schemes which exploit differences in bit error protection levels in orthogonal frequency division multiplexing (OFDM) systems over frequency selective fading channels. We introduce an UEP scheme which improves the link performance with multiple transmit and receive antennas. Especially, we propose a new receiver structure based on two stage Maximum Likelihood detection (MLD) schemes which can approach the performance of a full search MLD receiver with much reduced computational complexity. In the performance analysis, we derive a generalized pairwise error probability expression for the proposed UEP schemes. Simulation results show that the proposed schemes achieve a significant performance gain over the conventional equal error protection (EEP) scheme.

PAPR Reduction in Limited Feedback MIMO Beeamforming OFDM Systems (제한된 되먹임의 송신 빔성형 MIMO OFDM 시스템에서 PAPR 감소 기법)

  • Shin, Joon-Woo;Jeong, Eui-Rim;Lee, Yong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8C
    • /
    • pp.758-766
    • /
    • 2007
  • High peak-to-average power ratio(PAPR) is one of serious problems in the orthogonal frequency division multiplexing(OFDM) systems. This paper proposes a PAPR reduction technique for limited feedback multiple input multiple output(MIMO) OFDM systems. The proposed method is based on the null space of the MIMO channel where a dummy signal is made in the channel's null space and then, subtracted from the original signal to reduce the PAPR. First, we show that a problem occurs when the existing method is directly applied to limited feedback MIMO case. Then, a weight function for the dummy signal is proposed to mitigate the degradation of the receiver performance while still reducing PAPR significantly. The weight function is derived from a constrained nonlinear optimization problem to minimize the mean square error between the received signal and its ideal signal. Simulation results shows that the proposed technique provides about 2.5dB PAPR reduction with 0.2dB bit-error probability loss.

Performance Analysis of Adaptive Bitloading Algorithm in MIMO-OFDM Systems (MIMO-OFDM 시스템에서 적응비트로딩 알고리즘의 성능평가)

  • Lee Min-Hyouck;Byon Kuk-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.4
    • /
    • pp.752-757
    • /
    • 2006
  • In the case of the requirement of high speed transmission, OFDM is a powerful technique employed in communications systems suffering from frequency selective fading. In this paper, we apply an optimal adaptive bitloading algorithm technique. The BER performance of the fixed-rate SISO and adaptive SISO is simulated. Specially, we can decompose the MIMO channel into the SISO channel by making use of the singular value decomposition(SVD) assuming channel knowledge in a multipath environment. As a results of simulation, we confirmed that the BER enhancement of MIMO-OFDM system with the bitloadins algorithm was superior to the SISO-OFDM system.

An Efficient Scheme to Achieve Differential Unitary Space-Time Modulation on MIMO-OFDM Systems

  • Liu, Shou-Yin;Chong, Jong-Wha
    • ETRI Journal
    • /
    • v.26 no.6
    • /
    • pp.565-574
    • /
    • 2004
  • Differential unitary space-time modulation (DUSTM) has emerged as a promising technique to obtain spatial diversity without intractable channel estimation. This paper presents a study of the application of DUSTM on multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems with frequency-selective fading channels. From the view of a correlation analysis between subcarriers of OFDM, we obtain the maximum achievable diversity of DUSTM on MIMO-OFDM systems. Moreover, an efficient implementation strategy based on subcarrier reconstruction is proposed, which transmits all the signals of one signal matrix in one OFDM transmission and performs differential processing between two adjacent OFDM blocks. The proposed method is capable of obtaining both spatial and multipath diversity while reducing the effect of time variation of channels to a minimum. The performance improvement is confirmed by simulation results.

  • PDF