• Title/Summary/Keyword: multiple verification

Search Result 534, Processing Time 0.023 seconds

Estimation of Greenhouse Tomato Transpiration through Mathematical and Deep Neural Network Models Learned from Lysimeter Data (라이시미터 데이터로 학습한 수학적 및 심층 신경망 모델을 통한 온실 토마토 증산량 추정)

  • Meanne P. Andes;Mi-young Roh;Mi Young Lim;Gyeong-Lee Choi;Jung Su Jung;Dongpil Kim
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.384-395
    • /
    • 2023
  • Since transpiration plays a key role in optimal irrigation management, knowledge of the irrigation demand of crops like tomatoes, which are highly susceptible to water stress, is necessary. One way to determine irrigation demand is to measure transpiration, which is affected by environmental factor or growth stage. This study aimed to estimate the transpiration amount of tomatoes and find a suitable model using mathematical and deep learning models using minute-by-minute data. Pearson correlation revealed that observed environmental variables significantly correlate with crop transpiration. Inside air temperature and outside radiation positively correlated with transpiration, while humidity showed a negative correlation. Multiple Linear Regression (MLR), Polynomial Regression model, Artificial Neural Network (ANN), Long short-term Memory (LSTM), and Gated Recurrent Unit (GRU) models were built and compared their accuracies. All models showed potential in estimating transpiration with R2 values ranging from 0.770 to 0.948 and RMSE of 0.495 mm/min to 1.038 mm/min in the test dataset. Deep learning models outperformed the mathematical models; the GRU demonstrated the best performance in the test data with 0.948 R2 and 0.495 mm/min RMSE. The LSTM and ANN closely followed with R2 values of 0.946 and 0.944, respectively, and RMSE of 0.504 m/min and 0.511, respectively. The GRU model exhibited superior performance in short-term forecasts while LSTM for long-term but requires verification using a large dataset. Compared to the FAO56 Penman-Monteith (PM) equation, PM has a lower RMSE of 0.598 mm/min than MLR and Polynomial models degrees 2 and 3 but performed least among all models in capturing variability in transpiration. Therefore, this study recommended GRU and LSTM models for short-term estimation of tomato transpiration in greenhouses.

The Effect of Brand Extension of Private Label on Consumer Attitude - a focus on the moderating effect of the perceived fit difference between parent brands and an extended brand - (PL의 브랜드확장이 소비자태도에 미치는 영향에 관한 연구 : 모브랜드 적합도 인식 차이의 조절효과를 중심으로)

  • Kim, Jong-Keun;Kim, Hyang-Mi;Lee, Jong-Ho
    • Journal of Distribution Research
    • /
    • v.16 no.4
    • /
    • pp.1-27
    • /
    • 2011
  • Introduction: Sales of private labels(PU have been growing m recent years. Globally, PLs have already achieved 20% share, although between 25 and 50% share in most of the European markets(AC. Nielson, 2005). These products are aimed to have comparable quality and prices as national brand(NB) products and have been continuously eroding manufacturer's national brand market share. Stores have also started introducing premium PLs that are of higher-quality and more reasonably priced compared to NBs. Worldwide, many retailers already have a multiple-tier private label architecture. Consumers as a consequence are now able to have a more diverse brand choice in store than ever before. Since premium PLs are priced higher than regular PLs and even, in some cases, above NBs, stores can expect to generate higher profits. Brand extensions and private label have been extensively studied in the marketing field. However, less attention has been paid to the private label extension. Therefore, this research focuses on private label extension using the Multi-Attribute Attitude Model(Fishbein and Ajzen, 1975). Especially there are few studies that consider the hierarchical effect of the PL's two parent brands: store brand and the original PL. We assume that the attitude toward each of the two parent brands affects the attitude towards the extended PL. The influence from each parent brand toward extended PL will vary according to the perceived fit between each parent brand and the extended PL. This research focuses on how these two parent brands act as reference points to one another in the consumers' choice consideration. Specifically we seek to understand how store image and attitude towards original PL affect consumer perceptions of extended premium PL. How consumers perceive extended premium PLs could provide strategic suggestions for retailer managers with specific suggestions on whether it is more effective: to position extended premium PL similarly or dissimilarly to original PL especially on the quality dimension and congruency with store image. There is an extensive body of research on branding and brand extensions (e.g. Aaker and Keller, 1990) and more recently on PLs(e.g. Kumar and Steenkamp, 2007). However there are no studies to date that look at the upgrading and influence of original PLs and attitude towards store on the premium PL extension. This research wishes to make a contribution to this gap using the perceived fit difference between parent brands and extended premium PL as the context. In order to meet the above objectives, we investigate which factors heighten consumers' positive attitude toward premium PL extension. Research Model and Hypotheses: When considering the attitude towards the premium PL extension, we expect four factors to have an influence: attitude towards store; attitude towards original PL; perceived congruity between the store image and the premium PL; perceived similarity between the original PL and the premium PL. We expect that all these factors have an influence on consumer attitude towards premium PL extension. Figure 1 gives the research model and hypotheses. Method: Data were collected by an intercept survey conducted on consumers at discount stores. 403 survey responses were attained (total 59.8% female, across all age ranges). Respondents were asked to respond to a series of Questions measured on 7 point likert-type scales. The survey consisted of Questions that measured: the trust towards store and the original PL; the satisfaction towards store and the original PL; the attitudes towards store, the original PL, and the extended premium PL; the perceived similarity of the original PL and the extended premium PL; the perceived congruity between the store image and the extended premium PL. Product images with specific explanations of the features of premium PL, regular PL and NB we reused as the stimuli for the Question response. We developed scales to measure the research constructs. Cronbach's alphaw as measured each construct with the reliability for all constructs exceeding the .70 standard(Nunnally, 1978). Results: To test the hypotheses, path analysis was conducted using LISREL 8.30. The path analysis for verification of the model produced satisfactory results. The validity index shows acceptable results(${\chi}^2=427.00$(P=0.00), GFI= .90, AGFI= .87, NFI= .91, RMSEA= .062, RMR= .047). With the increasing retailer use of premium PLBs, the intention of this research was to examine how consumers use original PL and store image as reference points as to the attitude towards premium PL extension. Results(see table 1 & 2) show that the attitude of each parent brand (attitudes toward store and original pL) influences the attitude towards extended PL and their perceived fit moderates these influences. Attitude toward the extended PL was influenced by the relative level of perceived fit. Discussion of results and future direction: These results suggest that the future strategy for the PL extension needs to consider that positive parent brand attitude is more strongly associated with the attitude toward PL extensions. Specifically, to improve attitude towards PL extension, building and maintaining positive attitude towards original PL is necessary. Positioning premium PL congruently to store image is also important for positive attitude. In order to improve this research, the following alternatives should also be considered. To improve the research model's predictive power, more diverse products should be included in study. Other attributes of product should also be included such as design, brand name since we only considered trust and satisfaction as factors to build consumer attitudes.

  • PDF

Improved Social Network Analysis Method in SNS (SNS에서의 개선된 소셜 네트워크 분석 방법)

  • Sohn, Jong-Soo;Cho, Soo-Whan;Kwon, Kyung-Lag;Chung, In-Jeong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.117-127
    • /
    • 2012
  • Due to the recent expansion of the Web 2.0 -based services, along with the widespread of smartphones, online social network services are being popularized among users. Online social network services are the online community services which enable users to communicate each other, share information and expand human relationships. In the social network services, each relation between users is represented by a graph consisting of nodes and links. As the users of online social network services are increasing rapidly, the SNS are actively utilized in enterprise marketing, analysis of social phenomenon and so on. Social Network Analysis (SNA) is the systematic way to analyze social relationships among the members of the social network using the network theory. In general social network theory consists of nodes and arcs, and it is often depicted in a social network diagram. In a social network diagram, nodes represent individual actors within the network and arcs represent relationships between the nodes. With SNA, we can measure relationships among the people such as degree of intimacy, intensity of connection and classification of the groups. Ever since Social Networking Services (SNS) have drawn increasing attention from millions of users, numerous researches have made to analyze their user relationships and messages. There are typical representative SNA methods: degree centrality, betweenness centrality and closeness centrality. In the degree of centrality analysis, the shortest path between nodes is not considered. However, it is used as a crucial factor in betweenness centrality, closeness centrality and other SNA methods. In previous researches in SNA, the computation time was not too expensive since the size of social network was small. Unfortunately, most SNA methods require significant time to process relevant data, and it makes difficult to apply the ever increasing SNS data in social network studies. For instance, if the number of nodes in online social network is n, the maximum number of link in social network is n(n-1)/2. It means that it is too expensive to analyze the social network, for example, if the number of nodes is 10,000 the number of links is 49,995,000. Therefore, we propose a heuristic-based method for finding the shortest path among users in the SNS user graph. Through the shortest path finding method, we will show how efficient our proposed approach may be by conducting betweenness centrality analysis and closeness centrality analysis, both of which are widely used in social network studies. Moreover, we devised an enhanced method with addition of best-first-search method and preprocessing step for the reduction of computation time and rapid search of the shortest paths in a huge size of online social network. Best-first-search method finds the shortest path heuristically, which generalizes human experiences. As large number of links is shared by only a few nodes in online social networks, most nods have relatively few connections. As a result, a node with multiple connections functions as a hub node. When searching for a particular node, looking for users with numerous links instead of searching all users indiscriminately has a better chance of finding the desired node more quickly. In this paper, we employ the degree of user node vn as heuristic evaluation function in a graph G = (N, E), where N is a set of vertices, and E is a set of links between two different nodes. As the heuristic evaluation function is used, the worst case could happen when the target node is situated in the bottom of skewed tree. In order to remove such a target node, the preprocessing step is conducted. Next, we find the shortest path between two nodes in social network efficiently and then analyze the social network. For the verification of the proposed method, we crawled 160,000 people from online and then constructed social network. Then we compared with previous methods, which are best-first-search and breath-first-search, in time for searching and analyzing. The suggested method takes 240 seconds to search nodes where breath-first-search based method takes 1,781 seconds (7.4 times faster). Moreover, for social network analysis, the suggested method is 6.8 times and 1.8 times faster than betweenness centrality analysis and closeness centrality analysis, respectively. The proposed method in this paper shows the possibility to analyze a large size of social network with the better performance in time. As a result, our method would improve the efficiency of social network analysis, making it particularly useful in studying social trends or phenomena.

A Study on Market Size Estimation Method by Product Group Using Word2Vec Algorithm (Word2Vec을 활용한 제품군별 시장규모 추정 방법에 관한 연구)

  • Jung, Ye Lim;Kim, Ji Hui;Yoo, Hyoung Sun
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.1-21
    • /
    • 2020
  • With the rapid development of artificial intelligence technology, various techniques have been developed to extract meaningful information from unstructured text data which constitutes a large portion of big data. Over the past decades, text mining technologies have been utilized in various industries for practical applications. In the field of business intelligence, it has been employed to discover new market and/or technology opportunities and support rational decision making of business participants. The market information such as market size, market growth rate, and market share is essential for setting companies' business strategies. There has been a continuous demand in various fields for specific product level-market information. However, the information has been generally provided at industry level or broad categories based on classification standards, making it difficult to obtain specific and proper information. In this regard, we propose a new methodology that can estimate the market sizes of product groups at more detailed levels than that of previously offered. We applied Word2Vec algorithm, a neural network based semantic word embedding model, to enable automatic market size estimation from individual companies' product information in a bottom-up manner. The overall process is as follows: First, the data related to product information is collected, refined, and restructured into suitable form for applying Word2Vec model. Next, the preprocessed data is embedded into vector space by Word2Vec and then the product groups are derived by extracting similar products names based on cosine similarity calculation. Finally, the sales data on the extracted products is summated to estimate the market size of the product groups. As an experimental data, text data of product names from Statistics Korea's microdata (345,103 cases) were mapped in multidimensional vector space by Word2Vec training. We performed parameters optimization for training and then applied vector dimension of 300 and window size of 15 as optimized parameters for further experiments. We employed index words of Korean Standard Industry Classification (KSIC) as a product name dataset to more efficiently cluster product groups. The product names which are similar to KSIC indexes were extracted based on cosine similarity. The market size of extracted products as one product category was calculated from individual companies' sales data. The market sizes of 11,654 specific product lines were automatically estimated by the proposed model. For the performance verification, the results were compared with actual market size of some items. The Pearson's correlation coefficient was 0.513. Our approach has several advantages differing from the previous studies. First, text mining and machine learning techniques were applied for the first time on market size estimation, overcoming the limitations of traditional sampling based- or multiple assumption required-methods. In addition, the level of market category can be easily and efficiently adjusted according to the purpose of information use by changing cosine similarity threshold. Furthermore, it has a high potential of practical applications since it can resolve unmet needs for detailed market size information in public and private sectors. Specifically, it can be utilized in technology evaluation and technology commercialization support program conducted by governmental institutions, as well as business strategies consulting and market analysis report publishing by private firms. The limitation of our study is that the presented model needs to be improved in terms of accuracy and reliability. The semantic-based word embedding module can be advanced by giving a proper order in the preprocessed dataset or by combining another algorithm such as Jaccard similarity with Word2Vec. Also, the methods of product group clustering can be changed to other types of unsupervised machine learning algorithm. Our group is currently working on subsequent studies and we expect that it can further improve the performance of the conceptually proposed basic model in this study.