• Title/Summary/Keyword: multiple support vector machine

Search Result 131, Processing Time 0.022 seconds

Fault diagnosis of rotating machinery using multi-class support vector machines (Multi-class SVM을 이용한 회전기계의 결함 진단)

  • 황원우;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.537-543
    • /
    • 2003
  • Condition monitoring and fault diagnosis of machines are gaining importance in the industry because of the need to increase reliability and to decrease possible loss of production due to machine breakdown. By comparing the vibration signals of a machine running in normal and faulty conditions, detection of faults like mass unbalance, shaft misalignment and bearing defects is possible. This paper presents a novel approach for applying the fault diagnosis of rotating machinery. To detect multiple faults in rotating machinery, a feature selection method and support vector machine (SVM) based multi-class classifier are constructed and used in the faults diagnosis. The results in experiments prove that fault types can be diagnosed by the above method.

  • PDF

Support Vector Machine Learning for Region-Based Image Retrieval with Relevance Feedback

  • Kim, Deok-Hwan;Song, Jae-Won;Lee, Ju-Hong;Choi, Bum-Ghi
    • ETRI Journal
    • /
    • v.29 no.5
    • /
    • pp.700-702
    • /
    • 2007
  • We present a relevance feedback approach based on multi-class support vector machine (SVM) learning and cluster-merging which can significantly improve the retrieval performance in region-based image retrieval. Semantically relevant images may exhibit various visual characteristics and may be scattered in several classes in the feature space due to the semantic gap between low-level features and high-level semantics in the user's mind. To find the semantic classes through relevance feedback, the proposed method reduces the burden of completely re-clustering the classes at iterations and classifies multiple classes. Experimental results show that the proposed method is more effective and efficient than the two-class SVM and multi-class relevance feedback methods.

  • PDF

Medical Image Classification using Pre-trained Convolutional Neural Networks and Support Vector Machine

  • Ahmed, Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.1-6
    • /
    • 2021
  • Recently, pre-trained convolutional neural network CNNs have been widely used and applied for medical image classification. These models can utilised in three different ways, for feature extraction, to use the architecture of the pre-trained model and to train some layers while freezing others. In this study, the ResNet18 pre-trained CNNs model is used for feature extraction, followed by the support vector machine for multiple classes to classify medical images from multi-classes, which is used as the main classifier. Our proposed classification method was implemented on Kvasir and PH2 medical image datasets. The overall accuracy was 93.38% and 91.67% for Kvasir and PH2 datasets, respectively. The classification results and performance of our proposed method outperformed some of the related similar methods in this area of study.

The Study of Bio Emotion Cognition follow Stress Index Number by Multiplex SVM Algorithm (다중 SVM 알고리즘을 이용한 스트레스 지수에 따른 생체 감성 인식에 관한 연구)

  • Kim, Tae-Yeun;Seo, Dae-Woong;Bae, Sang-Hyun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.1
    • /
    • pp.45-51
    • /
    • 2012
  • In this paper, it's a system which recognize the user's emotions after obtaining the biological informations(pulse sensor, blood pressure sensor, blood sugar sensor etc.) about user's bio informations through wireless sensors in accordance of previously collected informations about user's stress index and classification the Colors & Music. This system collects the inputs, saves in the database and finally, classifies emotions according to the stress quotient by using multiple SVM(Support Vector Machine) algorithm. The experiment of multiple SVM algorithm was conducted by using 2,000 data sets. The experiment has approximately 87.7% accuracy.

Multiple Discriminative DNNs for I-Vector Based Open-Set Language Recognition (I-벡터 기반 오픈세트 언어 인식을 위한 다중 판별 DNN)

  • Kang, Woo Hyun;Cho, Won Ik;Kang, Tae Gyoon;Kim, Nam Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.958-964
    • /
    • 2016
  • In this paper, we propose an i-vector based language recognition system to identify the spoken language of the speaker, which uses multiple discriminative deep neural network (DNN) models analogous to the multi-class support vector machine (SVM) classification system. The proposed model was trained and tested using the i-vectors included in the NIST 2015 i-vector Machine Learning Challenge database, and shown to outperform the conventional language recognition methods such as cosine distance, SVM and softmax NN classifier in open-set experiments.

A Performance Comparison of SVM and MLP for Multiple Defect Diagnosis of Gas Turbine Engine (가스터빈 엔진의 복합 결함 진단을 위한 SVM과 MLP의 성능 비교)

  • Park Jun-Cheol;Roh Tae-Seong;Choi Dong-Whan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.158-161
    • /
    • 2005
  • In this study, the defect diagnosis of the gas turbine engine was tried using Support Vector Machine(SVM). It is known that SVM can find the optimal solution mathematically through classifying two groups and searching for the Hyperplane of the arbitrary nonlinear boundary. The method for the decision of the gas turbine defect quantitatively was proposed using the Multi Layer SVM for classifying two groups and it was verified that SVM was shown quicker and more reliable diagnostic results than the existing Multi Layer Perceptron(MLP).

  • PDF

A Novel Feature Selection Approach to Classify Breast Cancer Drug using Optimized Grey Wolf Algorithm

  • Shobana, G.;Priya, N.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.258-270
    • /
    • 2022
  • Cancer has become a common disease for the past two decades throughout the globe and there is significant increase of cancer among women. Breast cancer and ovarian cancers are more prevalent among women. Majority of the patients approach the physicians only during their final stage of the disease. Early diagnosis of cancer remains a great challenge for the researchers. Although several drugs are being synthesized very often, their multi-benefits are less investigated. With millions of drugs synthesized and their data are accessible through open repositories. Drug repurposing can be done using machine learning techniques. We propose a feature selection technique in this paper, which is novel that generates multiple populations for the grey wolf algorithm and classifies breast cancer drugs efficiently. Leukemia drug dataset is also investigated and Multilayer perceptron achieved 96% prediction accuracy. Three supervised machine learning algorithms namely Random Forest classifier, Multilayer Perceptron and Support Vector Machine models were applied and Multilayer perceptron had higher accuracy rate of 97.7% for breast cancer drug classification.

An SVM-based Face Verification System Using Multiple Feature Combination and Similarity Space (다중 특징 결합과 유사도 공간을 이용한 SVM 기반 얼굴 검증 시스템)

  • 김도형;윤호섭;이재연
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.6
    • /
    • pp.808-816
    • /
    • 2004
  • This paper proposes the method of implementation of practical online face verification system based on multiple feature combination and a similarity space. The main issue in face verification is to deal with the variability in appearance. It seems difficult to solve this issue by using a single feature. Therefore, combination of mutually complementary features is necessary to cope with various changes in appearance. From this point of view, we describe the feature extraction approaches based on multiple principal component analysis and edge distribution. These features are projected on a new intra-person/extra-person similarity space that consists of several simple similarity measures, and are finally evaluated by a support vector machine. From the experiments on a realistic and large database, an equal error rate of 0.029 is achieved, which is a sufficiently practical level for many real- world applications.

Visual Object Tracking by Using Multiple Random Walkers (다중 랜덤 워커를 이용한 객체 추적 기법)

  • Mun, Juhyeok;Kim, Han-Ul;Kim, Chang-Su
    • Journal of Broadcast Engineering
    • /
    • v.21 no.6
    • /
    • pp.913-919
    • /
    • 2016
  • In this paper, we propose the visual tracking algorithm that takes advantage of multiple random walkers. We first show the tracking method based on support vector machine as [1] and suggest a method that suppresses feature vectors extracted from backgrounds while preserve features vectors from foregrounds. We also show how to discriminate between foregrounds and backgrounds. Learned by reducing influences of backgrounds, support vector machine can clearly distinguish foregrounds and backgrounds from the image whose target objects are similar to backgrounds and occluded by another object. Thus, the algorithm can track target objects well. Furthermore, we introduce a simple method improving tracking speed. Finally, experiments validate that proposed algorithm yield better performance than the state-of-the-art trackers on the widely-used benchmark dataset with high speed.

Context Dependent Fusion with Support Vector Machines (Support Vector Machine을 이용한 문맥 민감형 융합)

  • Heo, Gyeongyong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.7
    • /
    • pp.37-45
    • /
    • 2013
  • Context dependent fusion (CDF) is a fusion algorithm that combines multiple outputs from different classifiers to achieve better performance. CDF tries to divide the problem context into several homogeneous sub-contexts and to fuse data locally with respect to each sub-context. CDF showed better performance than existing methods, however, it is sensitive to noise due to the large number of parameters optimized and the innate linearity limits the application of CDF. In this paper, a variant of CDF using support vector machines (SVMs) for fusion and kernel principal component analysis (K-PCA) for context extraction is proposed to solve the problems in CDF, named CDF-SVM. Kernel PCA can shape irregular clusters including elliptical ones through the non-linear kernel transformation and SVM can draw a non-linear decision boundary. Regularization terms is also included in the objective function of CDF-SVM to mitigate the noise sensitivity in CDF. CDF-SVM showed better performance than CDF and its variants, which is demonstrated through the experiments with a landmine data set.