International Journal of Fuzzy Logic and Intelligent Systems
/
제7권1호
/
pp.41-48
/
2007
Latest advances in network sensor technology and state of the art of mobile robot, and artificial intelligence research can be employed to develop autonomous and distributed monitoring systems. In this study, as the preliminary step for developing a multi-purpose "Intelligent Space" platform to implement advanced technologies easily to realize smart services to human. We will give an explanation for the ISpace system architecture designed and implemented in this study and a short review of existing techniques, since there exist several recent thorough books and review paper on this paper. Instead we will focus on the main results with relevance to the DIND data fusion with CI of Intelligent Space. We will conclude by discussing some possible future extensions of ISpace. It is first dealt with the general principle of the navigation and guidance architecture, then the detailed functions tracking multiple objects, human detection and motion assessment, with the results from the simulations run.
생체 인식은 사람의 생체적, 행동적 특징 정보를 특정 장치로 추출하여 본인 여부를 판별하는 기술이다. 생체 인식 분야에서 생체 특성 위조, 복제, 해킹 등 사이버 위협이 증가하고 있다. 이에 대응하여 보안 시스템이 강화되고 복잡해지며, 개인이 사용하기 어려워지고 있다. 이를 위해 다중 생체 인식 모델이 연구되고 있다. 기존 연구들은 특징 융합 방법을 제시하고 있으나, 특징 융합 방법 간의 비교는 부족하다. 이에 본 논문에서는 지문, 얼굴, 홍채 영상을 이용한 다중 생체 인식 모델의 융합 방법을 비교 평가했다. 특징 추출을 위해VGG-16, ResNet-50, EfficientNet-B1, EfficientNet-B4, EfficientNet-B7, Inception-v3를 사용했으며, 특성융합을 위해 'Sensor-Level', 'Feature-Level', 'Score-Level', 'Rank-Level' 융합 방법을 비교 평가했다. 비교평가결과 'Feature-Level' 융합 방법에서 EfficientNet-B7 모델이 98.51%의 정확도를 보이며 높은 안정성을 보였다. 그러나 EfficietnNet-B7모델의 크기가 크기 때문에 생체 특성 융합을 위한 모델 경량화 연구가 필요하다.
본 연구에서는 무감독 영상분류를 위하여 특성이 다른 센서로 수집된 영상들에 대한 의사결정 수준의 영상 융합기법을 제안하였다. 제안된 기법은 공간 확장 분할에 근거한 무감독 계층군집 영상분류기법을 개개의 센서에서 수집된 영상에 독립적으로 적용한 후 그 결과로 생성되는 분할지역의 퍼지 클래스 벡터(fuzzy class vector)를 이용하여 각 센서의 분류 결과를 융합한다. 퍼지 클래스벡터는 분할지역이 각 클래스에 속할 확률을 표시하는 지시(indicator) 벡터로 간주되며 기대 최대화 (EM: Expected Maximization) 추정 법에 의해 관련 변수의 최대 우도 추정치가 반복적으로 계산되어진다. 본 연구에서는 같은 특성의 센서 혹은 밴드 별로 분할과 분류를 수행한 후 분할지역의 분류결과를 퍼지 클래스 벡터를 이용하여 합성하는 접근법을 사용하고 있으므로 일반적으로 다중센서의 영상의 분류기법에 사용하는 화소수준의 영상융합기법에서처럼 서로 다른 센서로부터 수집된 영상의 화소간의 공간적 일치에 대한 높은 정확도를 요구하지 않는다. 본 연구는 한반도 전라북도 북서지역에서 관측된 다중분광 SPOT 영상자료와 AIRSAR 영상자료에 적용한 결과 제안된 영상 융합기법에 의한 피복 분류는 확장 벡터의 접근법에 의한 영상 융합보다 서로 다른 센서로부터 얻어지는 정보를 더욱 적합하게 융합한다는 것을 보여주고 있다.
This article describes a cooperative localization technique of multiple robots sharing position information of each robot. In case of conventional methods such as EKF, they need to linearization process. Consequently, they are not able to guarantee that their result is range containing true value. In this paper, we propose a method to merge the data of redundant sensors based on constraints propagation techniques on intervals. The proposed method has a merit guaranteeing true value. Especially, we apply the constraints propagation technique fusing wheel encoders, a gyro, and an inexpensive GPS receiver. In addition, we utilize the correlation between GPS data in common workspace to improve localization performance for multiple robots. Simulation results show that proposed method improve considerably localization performance of multiple robots.
본 논문에서는 다중 센서를 사용하는 센서 융합 환경에서 지형 정보의 사용이 다중 지상 표적 추적 성능에 어떠한 영향을 미치는가를 조사하였다. 지형 정보의 사용을 연계시와 표적의 발생을 제한하는 두 가지 경우에 대해 적용하였다. 전자의 경우는 거의 영향이 없었으나 후자의 경우는 오궤적의 수가 줄어드는 긍정적인 결과를 가져왔다. 결론적으로 지형 정보의 사용은 부가적인 센서의 운영으로 간주할 수 있기 때문에 좀 더 조심스러운 지형 정보의 사용이 요구된다.
본 논문은 등록 지문의 정보를 융합하여 보다 많은 정보를 이용함으로써 지문 검증의 성능을 향상시키는 방법을 제안한다. 크기가 작은 센서는 많은 응용 분야에 적용시킬 수 있는 장점을 가지지만, 실제 지문을 입력 받는 센서 입력창의 물리적인 크기가 작기 때문에 지문 정보를 충분히 입력받지 못할 뿐만 아니라 등록된 지문 영상과 검증을 위해 입력된 지문 영상 사이의 공통영역이 축소되어 전체적인 시스템의 성능을 저하시키는 문제점이 있다. 이러한 문제점은 등록 영상을 여러 장 받아 그 정보를 융합하여 보다 큰 지문 영역을 표현하도록 함으로써 해결할 수 있다. 이를 위해서는 등록 영상간의 좌표계를 정밀하게 일치시키는 과정이 무엇보다 중요하다. 본 논문에서는 먼저 등록영상 사이의 대응 특징점 쌍을 이용하여 거칠게 일치시킨 다음, 융선의 정보를 포함하는 Distance Map을 이용하여 정밀하게 일치시키는 방법을 사용하였다. 정밀하게 일치된 좌표계를 통해 각각의 등록 지문들의 특징 정보는 하나의 큰 등록 정보로 형성된다. 제안된 방법을 통해 형성된 특징 융합 정보는 보다 넓은 면적의 지문을 표현할 수 있기 때문에 센서 입력창이 작아서 생기는 문제를 극복함으로써 지문 인식기의 성능을 향상시킨다. 본 논문의 실험 견과는 제안한 융합 특징 정보를 이용하는 방법이 그렇지 않은 방법보다 지문 인식기의 성능을 월등하게 향상시킴을 보여준다.
This study proposed two multisensor fusion methods for segment-based image classification utilizing a region-growing segmentation. The proposed algorithms employ a Gaussian-PDF measure and an evidential measure respectively. In remote sensing application, segment-based approaches are used to extract more explicit information on spatial structure compared to pixel-based methods. Data from a single sensor may be insufficient to provide accurate description of a ground scene in image classification. Due to the redundant and complementary nature of multisensor data, a combination of information from multiple sensors can make reduce classification error rate. The Gaussian-PDF method defines a regional measure as the PDF average of pixels belonging to the region, and assigns a region into a class associated with the maximum of regional measure. The evidential fusion method uses two measures of plausibility and belief, which are derived from a mass function of the Beta distribution for the basic probability assignment of every hypothesis about region classes. The proposed methods were applied to the SPOT XS and ENVISAT data, which were acquired over Iksan area of of Korean peninsula. The experiment results showed that the segment-based method of evidential measure is greatly effective on improving the classification via multisensor fusion.
IEIE Transactions on Smart Processing and Computing
/
제6권3호
/
pp.175-182
/
2017
In this paper, we present a multi-depth generation method using a time-of-flight (ToF) fusion camera system. Multi-view color cameras in the parallel type and ToF depth sensors are used for 3D scene capturing. Although each ToF depth sensor can measure the depth information of the scene in real-time, it has several problems to overcome. Therefore, after we capture low-resolution depth images by ToF depth sensors, we perform a post-processing to solve the problems. Then, the depth information of the depth sensor is warped to color image positions and used as initial disparity values. In addition, the warped depth data is used to generate a depth-discontinuity map for efficient stereo matching. By applying the stereo matching using belief propagation with the depth-discontinuity map and the initial disparity information, we have obtained more accurate and stable multi-view disparity maps in reduced time.
In this paper, a tracking algorithm for autonomous navigation of automated guided vehicles (AGVs) operating in container terminals is presented. The developed navigation algorithm takes the form of a federated information filter used to detect other AGVs and avoid obstacles using fused information from multiple sensors. Being equivalent to the Kalman filter (KF) algebraically, the information filter is extended to N-sensor distributed dynamic systems. In multi-sensor environments, the information-based filter is easier to decentralize, initialize, and fuse than a KF-based filter. It is proved that the information state and the information matrix of the suggested filter, which are weighted in terms of an information sharing factor, are equal to those of a centralized information filter under the regular conditions. Numerical examples using Monte Carlo simulation are provided to compare the centralized information filter and the proposed one.
By interacting with external wireless sensors, smartphones can gather high-fidelity data on the surrounding environment to develop various environment-aware, personalized applications. In this work we introduce the sensor virtualization module (SVM), which virtualizes external sensors so that smartphone applications can easily utilize a large number of external sensing resources. Implemented on the Android platform, our SVM simplifies the management of external sensors by abstracting them as virtual sensors to provide the capability of resolving conflicting data requests from multiple applications and also allowing sensor data fusion for data from different sensors to create new customized sensors elements. We envision our SVM to open the possibilities of designing novel personalized smartphone applications.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.