• Title/Summary/Keyword: multiple scales method

Search Result 137, Processing Time 0.03 seconds

The mediating effect of self-efficacy on the relationship between social anxiety and communication ability in nursing students (간호대학생의 대인불안과 의사소통능력의 관계에서 자기효능감의 매개효과)

  • You, Mi-Jin;Han, Hye-Sook
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.27 no.3
    • /
    • pp.298-305
    • /
    • 2021
  • Purpose: This study aims to identify the relationship between nursing students' social anxiety and communication ability, and in particular, to determine the mediating effect of self-efficacy. Methods: A total of 187 nursing students enrolled at four universities in Korea completed surveys between August and September 2020. The measurements included the Global Interpersonal Communication Competence Scale, self-efficacy scales, and interaction anxiousness scales. Data were analyzed using descriptive statistics, an independent t-test, one-way ANOVA, Pearson's correlation, multiple regression following the Baron and Kenny method, and bootstrapping for mediation. Results: Communication ability was significantly negatively correlated with social anxiety (r=-.61, p<.001) and significantly positively correlated with self-efficacy (r=.77, p<.001). Furthermore, self-efficacy had a partial mediating effect on the relationship between social anxiety and communication ability. Conclusion: The findings of this study suggest that communication ability can be improved if individual characteristics such as social anxiety and self-efficacy are considered. Therefore, when developing communication ability improvement programs for nursing students in the future, it is considered important to actively consider these personal characteristics.

The Structural Path Model of Adolescents′ Internet Addiction and Expected Self-Control (청소년의 인터넷 중독현상과 자기통제기대의 구조적 경로모형에 관한 연구)

  • 박재성
    • Korean Journal of Health Education and Promotion
    • /
    • v.21 no.3
    • /
    • pp.1-17
    • /
    • 2004
  • The purpose of this study is to evaluate the roles of expected self-control and expected self-control results in explaining adolescents' Internet addiction. In the study model, expectations of self-control and self-control results directly determine Internet addiction and Internet use time meditates the impacts of expectations of self-control and self-control results on Internet addiction. The study subjects are 1,080 middle and high school students in Busan. Stratified cluster sampling is applied by school type and school year. The response rate is 96%(l,037cases). This study develops the scales of expected self-control and expected self-control results. The scales of Internet addiction are devised by using the concept of functional dependency such as salience, withdrawal symptoms, mood modification, tolerance, relapse, and conflict. For verifying the study model, path analysis and multiple regression models are applied for identifying path significants and evaluating confounding effects of control variables, respectively. Moreover, multi partial F-test is performed for selecting the best regression model. Expected self-control is a significant determinant of Internet addiction and Internet use time that also significantly explains Internet addiction. The total effect of expected self-control towards Internet addiction is -.95. The total effect is comprised with the direct effect (-.71) and the indirect effect(-.24). In this result, the direct effect refers a curative effect since expected self-control directly reduces the level of Internet addiction, and the indirect effect refers a preventive effect because self-control can reduce time of Internet use that is a direct determinant of Internet addiction. In the test of the confounding effects of control variables, there are no confounding effects in the models of multiple regression. It implies a robustness of the study model as regards control variables. In conclusion, improving adolescents' expected self-control can control Internet addiction level. This finding implies that a health promotion program for improving expected self-control can be a cost effective method compared to other approaches.

Variations of SST around Korea inferred from NOAA AVHRR data

  • Kang, Y. Q.;Hahn, S. D.;Suh, Y. S.;Park, S.J.
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.236-241
    • /
    • 1998
  • The NOAA AVHRR remote sense SST data, collected by the National Fisheries Research and Development Institute (NFRDI), are analyzed in order to understand the spatial and temporal distributions of SST in the seas adjacent to Korea. Our study is based on 10-day SST images during last 7 years (1991-1997). For a time series analysis of multiple 557 images, all of images must be aligned exactly at the same position by adjusting the scales and positions of each SST image. We devised an algorithm which yields automatic detections of cloud pixels from multiple SST images. The cloud detection algorithm is based on a physical constraint that SST anomalies in the ocean do not exceed certain limits (we used $\pm$ 3$^{\circ}C$ as a criterion of SST anomalies). The remote sense SST data are tuned by comparing remote sense data with observed SST at coastal stations. Seasonal variations of SST are studied by harmonic fit of SST normals at each pixel. The SST anomalies are studied by statistical method. We found that the SST anomalies are rather persistent with time scales between 1 and 2 months. Utilizing the persistency of SST anomalies, we devised an algorithm for a prediction of future SST Model fit of SST anomalies to the Markov process model yields that autoregression coefficients of SST anomalies during a time elapse of 10 days are between 0.5 and 0.7. We plan to improve our algorithms of automatic cloud pixel detection and prediction of future SST. Our algorithm is expected to be incorporated to the operational real time service of SST around Korea.

  • PDF

Non-linear vibration and stability analysis of an axially moving rotor in sub-critical transporting speed range

  • Ghayesh, Mergen H.;Ghazavi, Mohammad R.;Khadem, Siamak E.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.4
    • /
    • pp.507-523
    • /
    • 2010
  • Parametric and forced non-linear vibrations of an axially moving rotor both in non-resonance and near-resonance cases have been investigated analytically in this paper. The axial speed is assumed to involve a mean value along with small harmonic fluctuations. Hamilton's principle is employed for this gyroscopic system to derive three coupled non-linear equations of motion. Longitudinal inertia is neglected under the quasi-static stretch assumption and two integro-partial-differential equations are obtained. With introducing a complex variable, the equations of motion is presented in the form of a single, complex equation. The method of multiple scales is applied directly to the resulting equation and the approximate closed-form solution is obtained. Stability boundaries for the steady-state response are formulated and the frequency-response curves are drawn. A number of case studies are considered and the numerical simulations are presented to highlight the effects of system parameters on the linear and nonlinear natural frequencies, mode shapes, limit cycles and the frequency-response curves of the system.

Dynamic Stability of Cylindrical Shells Subjected to Follower Forces (종동력을 받는 원통셸의 동적 안정성에 관한 연구)

  • 김현순;김지환
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.336-345
    • /
    • 1998
  • The dynamic instability of cylindrical shell with clamped-free boundary condition subjected to constant follower force or $P_0 + P_1cos {\Omega}_t$ type pulsating follower force is analyzed. The motion of shell is modeled using the shell theory considering rotary inertia and shear deformation, and analyzed with finite element method. In case of constant follower force, the changes of eigenvalues dependent on the magnitude of applied load are investigated and the critical loads are obtained. In case pulsating follower force, instability regions of exicitation frequency are obtained by modal transform with right and left modal matrix and by multiple scales method. The effects of thickness ratio and aspect ratio on the instability of shell are studied.

  • PDF

Updates to the wind tunnel method for determining design loads in ASCE 49-21

  • Gregory A. Kopp
    • Wind and Structures
    • /
    • v.37 no.2
    • /
    • pp.163-178
    • /
    • 2023
  • The paper reviews and discusses the substantive changes to the ASCE 49-21 Standard, Wind Tunnel Testing for Buildings and Other Structures. The most significant changes are the requirements for wind field simulations that utilize (i) partial turbulence simulations, (ii) partial model simulations for the flow around building Appurtenances, along with requirements for determining wind loads on products that are used at multiple sites in various configurations. These modifications tend to have the effect of easing the precise scaling requirements for flow simulations because it is not generally possible to construct accurate models for small elements placed, for example, on large buildings at the scales typically available in boundary layer wind tunnels. Additional discussion is provided on changes to the Standard with respect to measurement accuracy and data acquisition parameters, such as duration of tests, which are also related to scaling requirements. Finally, research needs with respect to aerodynamic mechanisms are proposed, with the goal of improving the understanding of the role of turbulence on separated-reattaching flows on building surfaces in order to continue to improve the wind tunnel method for determining design wind loads.

Text-to-Face Generation Using Multi-Scale Gradients Conditional Generative Adversarial Networks (다중 스케일 그라디언트 조건부 적대적 생성 신경망을 활용한 문장 기반 영상 생성 기법)

  • Bui, Nguyen P.;Le, Duc-Tai;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.764-767
    • /
    • 2021
  • While Generative Adversarial Networks (GANs) have seen huge success in image synthesis tasks, synthesizing high-quality images from text descriptions is a challenging problem in computer vision. This paper proposes a method named Text-to-Face Generation Using Multi-Scale Gradients for Conditional Generative Adversarial Networks (T2F-MSGGANs) that combines GANs and a natural language processing model to create human faces has features found in the input text. The proposed method addresses two problems of GANs: model collapse and training instability by investigating how gradients at multiple scales can be used to generate high-resolution images. We show that T2F-MSGGANs converge stably and generate good-quality images.

Fast Leaf Recognition and Retrieval Using Multi-Scale Angular Description Method

  • Xu, Guoqing;Zhang, Shouxiang
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1083-1094
    • /
    • 2020
  • Recognizing plant species based on leaf images is challenging because of the large inter-class variation and inter-class similarities among different plant species. The effective extraction of leaf descriptors constitutes the most important problem in plant leaf recognition. In this paper, a multi-scale angular description method is proposed for fast and accurate leaf recognition and retrieval tasks. The proposed method uses a novel scale-generation rule to develop an angular description of leaf contours. It is parameter-free and can capture leaf features from coarse to fine at multiple scales. A fast Fourier transform is used to make the descriptor compact and is effective in matching samples. Both support vector machine and k-nearest neighbors are used to classify leaves. Leaf recognition and retrieval experiments were conducted on three challenging datasets, namely Swedish leaf, Flavia leaf, and ImageCLEF2012 leaf. The results are evaluated with the widely used standard metrics and compared with several state-of-the-art methods. The results and comparisons show that the proposed method not only requires a low computational time, but also achieves good recognition and retrieval accuracies on challenging datasets.

Digital Image Processing Using Non-separable High Density Discrete Wavelet Transformation (비분리 고밀도 이산 웨이브렛 변환을 이용한 디지털 영상처리)

  • Shin, Jong Hong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.1
    • /
    • pp.165-176
    • /
    • 2013
  • This paper introduces the high density discrete wavelet transform using quincunx sampling, which is a discrete wavelet transformation that combines the high density discrete transformation and non-separable processing method, each of which has its own characteristics and advantages. The high density discrete wavelet transformation is one that expands an N point signal to M transform coefficients with M > N. The high density discrete wavelet transformation is a new set of dyadic wavelet transformation with two generators. The construction provides a higher sampling in both time and frequency. This new transform is approximately shift-invariant and has intermediate scales. In two dimensions, this transform outperforms the standard discrete wavelet transformation in terms of shift-invariant. Although the transformation utilizes more wavelets, sampling rates are high costs and some lack a dominant spatial orientation, which prevents them from being able to isolate those directions. A solution to this problem is a non separable method. The quincunx lattice is a non-separable sampling method in image processing. It treats the different directions more homogeneously than the separable two dimensional schemes. Proposed wavelet transformation can generate sub-images of multiple degrees rotated versions. Therefore, This method services good performance in image processing fields.

Static and Dynamic Instability Characteristics of Thin Plate like Beam with Internal Flaw Subjected to In-plane Harmonic Load

  • R, Rahul.;Datta, P.K.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.19-29
    • /
    • 2013
  • This paper deals with the study of buckling, vibration, and parametric instability characteristics in a damaged cross-ply and angle-ply laminated plate like beam under in-plane harmonic loading, using the finite element approach. Damage is modelled using an anisotropic damage formulation, based on the concept of reduction in stiffness. The effect of damage on free vibration and buckling characteristics of a thin plate like beam has been studied. It has been observed that damage shows a strong orthogonality and in general deteriorates the static and dynamic characteristics. For the harmonic type of loading, analysis was carried out on a thin plate like beam by solving the governing differential equation which is of Mathieu-Hill type, using the method of multiple scales (MMS). The effects of damage and its location on dynamic stability characteristics have been presented. The results indicate that, compared to the undamaged plate like beam, heavily damaged beams show steeper deviations in simple and combination resonance characteristics.