• 제목/요약/키워드: multiple robot

검색결과 486건 처리시간 0.117초

다 개체 로봇의 협업기법에 관한 연구 (A Collaboration Method to Confine a Robot with Multiple Robots)

  • 최준용;김동환;이귀형
    • 대한기계학회논문집A
    • /
    • 제34권8호
    • /
    • pp.953-964
    • /
    • 2010
  • 이 연구에서는 다 개체 로봇에 의해 하나의 로봇을 자율적으로 포획하는 협업제어에 관한 연구를 제안한다. 제안된 방안은 각 로봇에 대한 작업역할을 지정하는 역할 분류기, 단일 로봇의 행동 선택기 그리고 복잡한 상황을 대처하는 협업관리기로 구성되어 있다. 이 연구에서는 주변의 다개체 로봇의 다양한 행동을 통하여 단위 로봇을 특정지역으로 몰아가는 결과를 시뮬레이션을 통하여 그 적절성을 검증하였다.

Optimization Methods for Power Allocation and Interference Coordination Simultaneously with MIMO and Full Duplex for Multi-Robot Networks

  • Wang, Guisheng;Wang, Yequn;Dong, Shufu;Huang, Guoce;Sun, Qilu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권1호
    • /
    • pp.216-239
    • /
    • 2021
  • The present work addresses the challenging problem of coordinating power allocation with interference management in multi-robot networks by applying the promising expansion capabilities of multiple-input multiple-output (MIMO) and full duplex systems, which achieves it for maximizing the throughput of networks under the impacts of Doppler frequency shifts and external jamming. The proposed power allocation with interference coordination formulation accounts for three types of the interference, including cross-tier, co-tier, and mixed-tier interference signals with cluster head nodes operating in different full-duplex modes, and their signal-to-noise-ratios are respectively derived under the impacts of Doppler frequency shifts and external jamming. In addition, various optimization algorithms, including two centralized iterative optimization algorithms and three decentralized optimization algorithms, are applied for solving the complex and non-convex combinatorial optimization problem associated with the power allocation and interference coordination. Simulation results demonstrate that the overall network throughput increases gradually to some degree with increasing numbers of MIMO antennas. In addition, increasing the number of clusters to a certain extent increases the overall network throughput, although internal interference becomes a severe problem for further increases in the number of clusters. Accordingly, applications of multi-robot networks require that a balance should be preserved between robot deployment density and communication capacity.

홉필드 신경회로망을 이용한 다중 로보트의 최적 시간 제어 (Optimal time control of multiple robot using hopfield neural network)

  • 최영길;이홍기;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.147-151
    • /
    • 1991
  • In this paper a time-optimal path planning scheme for the multiple robot manipulators will be proposed by using hopfield neural network. The time-optimal path planning, which can allow multiple robot system to perform the demanded tasks with a minimum execution time and collision avoidance, may be of consequence to improve the productivity. But most of the methods proposed till now suffers from a significant computational burden and thus limits the on-line application. One way to avoid such a difficulty is to rearrange the problem as MTSP(Multiple Travelling Salesmen Problem) and then apply the Hopfield network technique, which can allow the parallel computation, to the minimum time problem. This paper proposes an approach for solving the time-optimal path planning of the multiple robots by using Hopfield neural network. The effectiveness of the proposed method is demonstrated by computer simulation.

  • PDF

Application of Multiple Fuzzy-Neuro Controllers of an Exoskeletal Robot for Human Elbow Motion Support

  • Kiguchi, Kazuo;Kariya, Shingo;Wantanabe, Keigo;Fukude, Toshio
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권1호
    • /
    • pp.49-55
    • /
    • 2002
  • A decrease in the birthrate and aging are progressing in Japan and several countries. In that society, it is important that physically weak persons such as elderly persons are able to take care of themselves. We have been developing exoskeletal robots for human (especially for physically weak persons) motion support. In this study, the controller controls the angular position and impedance of the exoskeltal robot system using multiple fuzzy-neuro controllers based on biological signals that reflect the human subject's intention. Skin surface electromyogram (EMG) signals and the generated wrist force by the human subject during the elbow motion have been used as input information of the controller. Since the activation level of working muscles tends to vary in accordance with the flexion angle of elbow, multiple fuzzy-neuro controllers are applied in the proposed method. The multiple fuzzy-neuro controllers are moderately switched in accordance with the elbow flexion angle. Because of the adaptation ability of the fuzzy-neuro controllers, the exoskeletal robot is flexible enough to deal with biological signal such as EMG. The experimental results show the effectiveness of the proposed controller.

다중 표식을 이용한 자율이동로봇의 자기위치측정 (Self-Localization of Autonomous Mobile Robot using Multiple Landmarks)

  • 강현덕;조강현
    • 제어로봇시스템학회논문지
    • /
    • 제10권1호
    • /
    • pp.81-86
    • /
    • 2004
  • This paper describes self-localization of a mobile robot from the multiple candidates of landmarks in outdoor environment. Our robot uses omnidirectional vision system for efficient self-localization. This vision system acquires the visible information of all direction views. The robot uses feature of landmarks whose size is bigger than that of others in image such as building, sculptures, placard etc. Robot uses vertical edges and those merged regions as the feature. In our previous work, we found the problem that landmark matching is difficult when selected candidates of landmarks belonging to region of repeating the vertical edges in image. To overcome these problems, robot uses the merged region of vertical edges. If interval of vertical edges is short then robot bundles them regarding as the same region. Thus, these features are selected as candidates of landmarks. Therefore, the extracted merged region of vertical edge reduces the ambiguity of landmark matching. Robot compares with the candidates of landmark between previous and current image. Then, robot is able to find the same landmark between image sequences using the proposed feature and method. We achieved the efficient self-localization result using robust landmark matching method through the experiments implemented in our campus.

다중이동로봇의 장애물 회피 논리 및 경로계획에 관한 연구 (A Study on the Obstacle Avoidance Algorithm and Path Planning of Multiple Mobile Robot)

  • 박경진;이기성;이종수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.633-635
    • /
    • 1999
  • In this paper, we propose a new method of path planning for multiple mobile robot in dynamic environment. To search the optimal path, multiple mobile robot is always generating path with static and dynamic obstacles avoidance from start point to goal point. The purpose of this paper is to design an optimal path for the mobile robot.

  • PDF

행렬 Decomposition 방법에 기초한 다중협동 로봇의 동적 조작도 해석 (Analysis of dynamic manipulability for multiple cooperating robot system based on matrix decomposition)

  • 이지홍;조복기
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 V
    • /
    • pp.2705-2708
    • /
    • 2003
  • In this paper, we propose a method that applies matrix decomposition technique to the connection of actuator capabilities of each robot to object acceleration limits for multiple cooperative robot systems. The robot systems under consideration are composed of several robot manipulators and each robot contacts a single object to carry the object while satisfying the constraints described in kinematics as well as dynamics. By manipulating kinematic and dynamic equations of both robots and objects, we at first derive a matrix relating joint torques with object acceleration, manipulate the null space of the matrix, and then we decompose the matrix into three parts representing indeterminancy, connectivity, and redundancy. With the decomposed matrix we derive the boundaries of object accelerations from given joint actuators. To show the validity of the proposed method some examples are given in which the results can be expected by intuitive observation.

  • PDF

구동 캐스터 바퀴를 이용한 전방향 모바일 로봇의 오도메트리와 내비게이션 (Odometry and Navigation of an Omni-directional Mobile Robot with Active Caster Wheels)

  • 정의정;이병주
    • 제어로봇시스템학회논문지
    • /
    • 제15권10호
    • /
    • pp.1014-1020
    • /
    • 2009
  • This work deals with navigation of an omni-directional mobile robot with active caster wheels. Initially, the posture of the omni-directional mobile robot is calculated by using the odometry information. Next, the position accuracy of the mobile robot is measured through comparison of the odometry information and the external sensor measurement. Finally, for successful navigation of the mobile robot, a motion planning algorithm that employs kinematic redundancy resolution method is proposed. Through experiments for multiple obstacles and multiple moving obstacles, the feasibility of the proposed navigation algorithm was verified.

다족 보행로봇의 속도작업공간 해석 (A Workspace Analysis Method of Multi-Legged Walking Robot in the Velocity Domain)

  • 이지홍;전봉환
    • 제어로봇시스템학회논문지
    • /
    • 제8권6호
    • /
    • pp.477-483
    • /
    • 2002
  • This paper deals with a workspace analysis of multi-legged walking robots in velocity domain(velocity workspace analysis). Noting that when robots are holding the same object in multiple cooperating robotic arm system the kinematic structure of the system is basically the same with that of a multi-legged walking robot standing on the ground, we invented a way ot applying the technique for multiple arm system to multi-legged walking robot. An important definition of reaction velocity is made and the bounds of velocities achievable by the moving body with multi-legs is derived from the given bounds on the capabilities of actuators of each legs through Jacobian matrix for given robot configuration. After some assumption of hard-foot-condition is adopted as a contact model between feet of robot and the ground, visualization process for the velocity workspace is proposed. Also, a series of application examples will be presented including continuous walking gaits as well as several different stationary posture of legged walking robots, which validate the usefulness of the proposed technique.

복수의 동적 장애물에 대한 이동로봇의 최적경로설계 (Optimal Path Planning of Mobile Robot for Multiple Moving Obstacles)

  • 김대광;강동중
    • 로봇학회논문지
    • /
    • 제2권2호
    • /
    • pp.183-190
    • /
    • 2007
  • The most important thing for navigation of a mobile robot is to find the most suitable path and avoid the obstacles in the static and dynamic environment. This paper presents a method to search the optimal path in start space extended to time domain with considering a velocity and a direction of moving obstacles. A modified version of $A^*$ algorithm has been applied for path planning in this work and proposed a method of path search to avoid a collision with moving obstacle in space-tim domain with a velocity and an orientation of obstacles. The velocity and the direction for moving obstacle are assumed as linear form. The simulation result shows that a mobile robot navigates safely among moving obstacles of constant linear velocity. This work can be applied for not only a moving robot but also a legged humanoid robot and all fields where the path planning is required.

  • PDF