• 제목/요약/키워드: multiple mode method

검색결과 446건 처리시간 0.031초

A direct damage detection method using Multiple Damage Localization Index Based on Mode Shapes criterion

  • Homaei, F.;Shojaee, S.;Amiri, G. Ghodrati
    • Structural Engineering and Mechanics
    • /
    • 제49권2호
    • /
    • pp.183-202
    • /
    • 2014
  • A new method of multiple damage detection in beam like structures is introduced. The mode shapes of both healthy and damaged structures are used in damage detection process (DDP). Multiple Damage Localization Index Based on Mode Shapes (MDLIBMS) is presented as a criterion in detecting damaged elements. A finite element modeling of structures is used to calculate the mode shapes parameters. The main advantages of the proposed method are its simplicity, flexibility on the number of elements and so the accuracy of the damage(s) position(s), sensitivity to small damage extend, capability in prediction of required number of mode shapes and low sensitivity to noisy data. In fact, because of differential and comparative form of MDLIBMS, using noise polluted data doesn't have major effect on the results. This makes the proposed method a powerful one in damage detection according to measured mode shape data. Because of its flexibility, damage detection process in multi span bridge girders with non-prismatic sections can be done by this method. Numerical simulations used to demonstrate these advantages.

천부지각 2차원 속도구조를 위한 레일리파의 군속도와 위상속도 역산의 비교 연구 (A Study of the comparison of Inversion of Rayleigh wave Group and Phase Velocities for Regional Near-Surface 2-Dimensional Velocity Structure)

  • 이보라;정희옥
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2006년도 공동학술대회 논문집
    • /
    • pp.51-59
    • /
    • 2006
  • 서해안 조간대에서 24 channel 탐사기로 획득한 표면파 자료의 위상속도와 군속도를 구한다음, 이를 역산하여 그 결과를 비교하였다. 위상속도의 분산곡선은 tau-p stacking 방법에 의하여, 군속도의 분산곡선은 wavelet analysis와 Multiple Filtering Technique의 두가지 방법을 사용하여 구하였다. 위상속도의 오차가 군속도의 오차보다 더 큰 것을 확인하였다. 군속도의 경우, wavelet analysis가 Multiple Filtering Technique 보다 fundamental mode와 higher mode를 구분하는데 더 효과적이었다. 역산결과, 군속도의 fundamental mode와 1st higher mode 를 동시에 사용했을 때, 공간적 해상도가 가장 좋았다. 이연구는 천부 지반의 S파 속도 구조를 구하는데, 군속도의 higher mode를 포함한 군속도 분산곡선을 사용하는 것이 효과적임을 시사한다.

  • PDF

A method for underwater image analysis using bi-dimensional empirical mode decomposition technique

  • Liu, Bo;Lin, Yan
    • Ocean Systems Engineering
    • /
    • 제2권2호
    • /
    • pp.137-145
    • /
    • 2012
  • Recent developments in underwater image recognition methods have received large attention by the ocean engineering researchers. In this paper, an improved bi-dimensional empirical mode decomposition (BEMD) approach is employed to decompose the given underwater image into intrinsic mode functions (IMFs) and residual. We developed a joint algorithm based on BEMD and Canny operator to extract multi-pixel edge features at multiple scales in IMFs sub-images. So the multiple pixel edge extraction is an advantage of our approach; the other contribution of this method is the realization of the bi-dimensional sifting process, which is realized utilizing regional-based operators to detect local extreme points and constructing radial basis function for curve surface interpolation. The performance of the multi-pixel edge extraction algorithm for processing underwater image is demonstrated in the contrast experiment with both the proposed method and the phase congruency edge detection.

Leader-Following Formation Control of Multiple Robots with Uncertainties through Sliding Mode and Nonlinear Disturbance Observer

  • Qian, Dianwei;Tong, Shiwen;Li, Chengdong
    • ETRI Journal
    • /
    • 제38권5호
    • /
    • pp.1008-1018
    • /
    • 2016
  • This paper presents a control scheme for the leader-following formation of multiple robots. The control scheme combines the sliding mode control (SMC) method with the nonlinear disturbance observer (NDOB) technique. The formation dynamics suffer from uncertainties because the individual robots are uncertain. Concerning such formation uncertainties, the leader-following formation dynamics are modeled. Assuming that the formation uncertainties have an unknown boundary, an NDOB-based observer was designed to estimate the formation uncertainties. A sliding surface containing the observer outputs has been defined. Regarding the sliding surface, an SMC-based controller was investigated to form uncertain robots. A sufficient condition in the sense of the Lyapunov theory was proven such that the formation system is asymptotically stable. Herein, some comparison results between the sole SMC method and the second-order SMC method are presented to demonstrate the effectiveness and feasibility of the control scheme for multiple robots in the presence of uncertainties.

Multiple damages detection in beam based approximate waveform capacity dimension

  • Yang, Zhibo;Chen, Xuefeng;Tian, Shaohua;He, Zhengjia
    • Structural Engineering and Mechanics
    • /
    • 제41권5호
    • /
    • pp.663-673
    • /
    • 2012
  • A number of mode shape-based structure damage identification methods have been verified by numerical simulations or experiments for on-line structure health monitoring (SHM). However, many of them need a baseline mode shape generated by the healthy structure serving as a reference to identify damages. Otherwise these methods can hardly perform well when multiple cracks conditions occur. So it is important to solve the problems above. By aid of the fractal dimension method (FD), Qiao and Wang proposed a generalized fractal dimension (GFD) to detect the delamination damage. As a modification of GFD, Qiao and Cao proposed the approximate waveform capacity dimension (AWCD) technique to simplify the calculation of fractal and overcome the false peak appearing in the high mode shapes. Based on their valued work, this paper combined and applied the AWCD method and curvature mode shape data to detect multiple damages in beam. In the end, the identification properties of the AWCD for multiple damages have been verified by groups of Monte Carlo simulations and experiments.

On the natural frequencies and mode shapes of a multiple-step beam carrying a number of intermediate lumped masses and rotary inertias

  • Lin, Hsien-Yuan;Tsai, Ying-Chien
    • Structural Engineering and Mechanics
    • /
    • 제22권6호
    • /
    • pp.701-717
    • /
    • 2006
  • In the existing reports regarding free transverse vibrations of the Euler-Bernoulli beams, most of them studied a uniform beam carrying various concentrated elements (such as point masses, rotary inertias, linear springs, rotational springs, spring-mass systems, ${\ldots}$, etc.) or a stepped beam with one to three step changes in cross-sections but without any attachments. The purpose of this paper is to utilize the numerical assembly method (NAM) to determine the exact natural frequencies and mode shapes of the multiple-step Euler-Bernoulli beams carrying a number of lumped masses and rotary inertias. First, the coefficient matrices for an intermediate lumped mass (and rotary inertia), left-end support and right-end support of a multiple-step beam are derived. Next, the overall coefficient matrix for the whole vibrating system is obtained using the numerical assembly technique of the conventional finite element method (FEM). Finally, the exact natural frequencies and the associated mode shapes of the vibrating system are determined by equating the determinant of the last overall coefficient matrix to zero and substituting the corresponding values of integration constants into the associated eigenfunctions, respectively. The effects of distribution of lumped masses and rotary inertias on the dynamic characteristics of the multiple-step beam are also studied.

Disjoint Particle Filter to Track Multiple Objects in Real-time

  • Chai, YoungJoon;Hong, Hyunki;Kim, TaeYong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권5호
    • /
    • pp.1711-1725
    • /
    • 2014
  • Multi-target tracking is the main purpose of many video surveillance applications. Recently, multi-target tracking based on the particle filter method has achieved robust results by using the data association process. However, this method requires many calculations and it is inadequate for real time applications, because the number of associations exponentially increases with the number of measurements and targets. In this paper, to reduce the computational cost of the data association process, we propose a novel multi-target tracking method that excludes particle samples in the overlapped predictive region between the target to track and marginal targets. Moreover, to resolve the occlusion problem, we define an occlusion mode with the normal dynamic mode. When the targets are occluded, the mode is switched to the occlusion mode and the samples are propagated by Gaussian noise without the sampling process of the particle filter. Experimental results demonstrate the robustness of the proposed multi-target tracking method even in occlusion.

Adaptive Mode Switching in Correlated Multiple Antenna Cellular Networks

  • Lee, Chul-Han;Chae, Chan-Byoung;Vishwanath, Sriram;Heath, Jr., Robert W.
    • Journal of Communications and Networks
    • /
    • 제11권3호
    • /
    • pp.279-286
    • /
    • 2009
  • This paper proposes an adaptive mode switching algorithm between two strategies in multiple antenna cellular networks:A single-user mode and a multi-user mode for the broadcast channel. If full channel state information is available at the base station, it is known that a multi user transmission strategy would outperform all single-user transmission strategies. In the absence of full side information, it is unclear what the capacity achieving method is, and thus there are few criteria to decide which of the myriad possible methods performs best given a system configuration. We compare a single user transmission and a multi user transmission with linear receivers in this paper where the transmitter and the receivers have multiple antennas, and find that neither strategy dom inates the other. There is instead a transition point between the two strategies. Then, the mode switching point is determined both ana lytically and numerically for a multiple antenna cellular downlink with correlation between transmit antennas.

Differential transform method and numerical assembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and rotary inertias

  • Yesilce, Yusuf
    • Structural Engineering and Mechanics
    • /
    • 제53권3호
    • /
    • pp.537-573
    • /
    • 2015
  • Multiple-step beams carrying intermediate lumped masses with/without rotary inertias are widely used in engineering applications, but in the literature for free vibration analysis of such structural systems; Bernoulli-Euler Beam Theory (BEBT) without axial force effect is used. The literature regarding the free vibration analysis of Bernoulli-Euler single-span beams carrying a number of spring-mass systems, Bernoulli-Euler multiple-step and multi-span beams carrying multiple spring-mass systems and multiple point masses are plenty, but that of Timoshenko multiple-step beams carrying intermediate lumped masses and/or rotary inertias with axial force effect is fewer. The purpose of this paper is to utilize Numerical Assembly Technique (NAT) and Differential Transform Method (DTM) to determine the exact natural frequencies and mode shapes of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and/or rotary inertias. The model allows analyzing the influence of the shear and axial force effects, intermediate lumped masses and rotary inertias on the free vibration analysis of the multiple-step beams by using Timoshenko Beam Theory (TBT). At first, the coefficient matrices for the intermediate lumped mass with rotary inertia, the step change in cross-section, left-end support and right-end support of the multiple-step Timoshenko beam are derived from the analytical solution. After the derivation of the coefficient matrices, NAT is used to establish the overall coefficient matrix for the whole vibrating system. Finally, equating the overall coefficient matrix to zero one determines the natural frequencies of the vibrating system and substituting the corresponding values of integration constants into the related eigenfunctions one determines the associated mode shapes. After the analytical solution, an efficient and easy mathematical technique called DTM is used to solve the differential equations of the motion. The calculated natural frequencies of Timoshenko multiple-step beam carrying intermediate lumped masses and/or rotary inertias for the different values of axial force are given in tables. The first five mode shapes are presented in graphs. The effects of axial force, intermediate lumped masses and rotary inertias on the free vibration analysis of Timoshenko multiple-step beam are investigated.

Deep Learning Machine Vision System with High Object Recognition Rate using Multiple-Exposure Image Sensing Method

  • Park, Min-Jun;Kim, Hyeon-June
    • 센서학회지
    • /
    • 제30권2호
    • /
    • pp.76-81
    • /
    • 2021
  • In this study, we propose a machine vision system with a high object recognition rate. By utilizing a multiple-exposure image sensing technique, the proposed deep learning-based machine vision system can cover a wide light intensity range without further learning processes on the various light intensity range. If the proposed machine vision system fails to recognize object features, the system operates in a multiple-exposure sensing mode and detects the target object that is blocked in the near dark or bright region. Furthermore, short- and long-exposure images from the multiple-exposure sensing mode are synthesized to obtain accurate object feature information. That results in the generation of a wide dynamic range of image information. Even with the object recognition resources for the deep learning process with a light intensity range of only 23 dB, the prototype machine vision system with the multiple-exposure imaging method demonstrated an object recognition performance with a light intensity range of up to 96 dB.