• 제목/요약/키워드: multiple mobile robots

검색결과 132건 처리시간 0.032초

다중 이동 로봇의 중앙 감시에 의한 충돌 회피 동작조정 방법 (Method for Collision Avoidance Motion Coordination of Multiple Mobile Robots Using Central Observation)

  • 고낙용;서동진
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권4호
    • /
    • pp.223-232
    • /
    • 2003
  • This paper presents a new method driving multiple robots to their goal position without collision. Each robot adjusts its motion based on the information on the goal location, velocity, and position of the robot and the velocity and position of the .other robots. To consider the movement of the robots in a work area, we adopt the concept of avoidability measure. The avoidability measure figures the degree of how easily a robot can avoid other robots considering the following factors: the distance from the robot to the other robots, velocity of the robot and the other robots. To implement the concept in moving robot avoidance, relative distance between the robots is derived. Our method combines the relative distance with an artificial potential field method. The proposed method is simulated for several cases. The results show that the proposed method steers robots to open space anticipating the approach of other robots. In contrast, the usual potential field method sometimes fails preventing collision or causes hasty motion, because it initiates avoidance motion later than the proposed method. The proposed method can be used to move robots in a robot soccer team to their appropriate position without collision as fast as possible.

Formation Approach for Mobile Robots with Inaccurate Sensor Information

  • Kim, Gunhee;Lee, Doo-Yong;Lee, Kyungno
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.104.3-104
    • /
    • 2001
  • This paper develops a control approach to generic formation tasks of multiple mobile robots with inaccurate sensor information. Inaccurate sensor information means that all the robots have only local sensors which cannot accurately measure absolute distances and directions of objects. The control logic is developed considering generic situations in order to adapt to increasing number of robots which participate in the formation. Petri nets are used for modeling and design of the control logic, which can visualize the control models and make it easy to check the states of each robot. Physically homogenous mobile robots are designed and built to evaluate the developed logic. Each robot is equipped with eighteen infrared sensors and a UHF transceiver module. The developed control ...

  • PDF

Cell-based motion control of mobile robots for soccer game

  • Baek, Seung-Min;Han, Woong-Gie;Kuc, Tae-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.819-824
    • /
    • 1997
  • This paper presents a cell-based motion control strategy for soccer playing mobile robots. In the central robot motion planner, the planar ground is divided into rectangular cells with variable sizes and motion indices to which direction the mobile robot should move. At every time the multiple objects-the goal gate, ball, and robots-detected, integer values of motion indices are assigned to the cells occupied by mobile robots. Once the indices being calculated, the most desirable state-action pair is chosen from the state and action sets to achieve successful soccer game strategy. The proposed strategy is computationally simple enough to be used for fast robotic soccer system.

  • PDF

Cooperating Control of Multiple Nonholonomic Mobile Robots Carrying a Ladder with Obstacles

  • Yang, Dong-Hoon;Choi, Yong-Chul;Hong, Suk-Kyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.818-829
    • /
    • 2003
  • A cooperating control algorithm for two nonholonomic mobile robots is proposed. The task is composed of collision avoidance against obstacles and carrying a ladder. The front robot and the rear robot are called the leader and the follower, respectively. Each robot has a nonholonomic constraint so it cannot move in perpendicular directions. The environment is initially supposed to be unknown except target position. The torque that drives leader is determined by distance between the leader and the target position or the distance between it and the obstacles. The torque by target is attractive and the torque by obstacles is repulsive. The two mobile robots are supposed to be connected by link that can be expanded and contracted. The follower computes its torque using position and orientation information from the leader by communication. Simulation results show that the robots can drive to target position without colliding into the obstacles and maintain the distance in the allowable range.

  • PDF

자율이동로봇 상호간의 무선통신시스템 (Wireless Communication System of Interaction between Autonomous Mobile Robots)

  • 원영진;유희삼
    • 전자공학회논문지T
    • /
    • 제36T권2호
    • /
    • pp.14-20
    • /
    • 1999
  • 본 논문에서는 자율분산로봇의 무선 통신시스템에 관하여 연구하였다. 이동로봇 사이의 협조 동작을 위하여 통신의 구현이 필요하다. 따라서, 우리는 이동로봇에 무선통신시스템을 적용하여 실험하였다. 그리고, 여러 이동로봇 사이의 상호작용을 연구하기 위하여 분산된 제어구조의 개념과 실험적 구조를 설명한다.

  • PDF

다중이동로봇의 모델링 및 제어를 위한 관리제어이론의 응용에 관한 연구 (App]ication of Supervisory Control Theory to Modeling and Control of a Fleet of Mobile Robots)

  • 신성영;조광현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.59-59
    • /
    • 2000
  • In this paper, we present a framework for modeling and control of multiple mobile robots which cowork within a bounded workspace and limited resources. To achieve this goal, we adopt a formalism of discrete event system and supervisory control theory based on Petri nets. We can divide our whole story into two parts: first, we search the shortest path using the distance vector algorithm, and then we construct the control scheme from which a number of mobile robots can work within a bounded workspace without any collision. The use of Petri net modeling allows us In synthesize a controller which achieves a control specification for the desired closed-loop behavior efficiently. Finally, the usefulness of the proposed Petri net formalism is illustrated by a simulation study.

  • PDF

재난 구조용 다중 로봇을 위한 GNSS 음영지역에서의 TWR 기반 협업 측위 기술 (TWR based Cooperative Localization of Multiple Mobile Robots for Search and Rescue Application)

  • 이창은;성태경
    • 로봇학회논문지
    • /
    • 제11권3호
    • /
    • pp.127-132
    • /
    • 2016
  • For a practical mobile robot team such as carrying out a search and rescue mission in a disaster area, the localization have to be guaranteed even in an environment where the network infrastructure is destroyed or a global positioning system (GPS) is unavailable. The proposed architecture supports localizing robots seamlessly by finding their relative locations while moving from a global outdoor environment to a local indoor position. The proposed schemes use a cooperative positioning system (CPS) based on the two-way ranging (TWR) technique. In the proposed TWR-based CPS, each non-localized mobile robot act as tag, and finds its position using bilateral range measurements of all localized mobile robots. The localized mobile robots act as anchors, and support the localization of mobile robots in the GPS-shadow region such as an indoor environment. As a tag localizes its position with anchors, the position error of the anchor propagates to the tag, and the position error of the tag accumulates the position errors of the anchor. To minimize the effect of error propagation, this paper suggests the new scheme of full-mesh based CPS for improving the position accuracy. The proposed schemes assuring localization were validated through experiment results.

소형 이동 로봇의 사람 추적 성능 개선을 위한 휠 오도메트리 기반 실시간 보정에 관한 연구 (Real-Time Correction Based on wheel Odometry to Improve Pedestrian Tracking Performance in Small Mobile Robot)

  • 박재훈;안민성;한재권
    • 로봇학회논문지
    • /
    • 제17권2호
    • /
    • pp.124-132
    • /
    • 2022
  • With growth in intelligence of mobile robots, interaction with humans is emerging as a very important issue for mobile robots and the pedestrian tracking technique following the designated person is adopted in many cases in a way that interacts with humans. Among the existing multi-object tracking techniques for pedestrian tracking, Simple Online and Realtime Tracking (SORT) is suitable for small mobile robots that require real-time processing while having limited computational performance. However, SORT fails to reflect changes in object detection values caused by the movement of the mobile robot, resulting in poor tracking performance. In order to solve this performance degradation, this paper proposes a more stable pedestrian tracking algorithm by correcting object tracking errors caused by robot movement in real time using wheel odometry information of a mobile robot and dynamically managing the survival period of the tracker that tracks the object. In addition, the experimental results show that the proposed methodology using data collected from actual mobile robots maintains real-time and has improved tracking accuracy with resistance to the movement of the mobile robot.

이동 로봇 군집 제어를 위한 퍼지 보상 PID제어기 (A Formation Control Scheme for Mobile Robots Using a Fuzzy Compensated PID Controller)

  • 배기현;최영규
    • 한국정보통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.26-34
    • /
    • 2015
  • 본 논문에서는 이동 로봇의 군집 제어를 위해 퍼지 보상된 PID 제어 시스템을 제안한다. 제어 시스템은 선도-추종기법에 기반한 기구학 제어기와 이동 로봇의 동역학적 영향을 고려한 동역학 제어기로 구성되어 있다. 이동 로봇의 대형 유지를 위해 동역학 제어기는 PID제어기로 구성되었다. 하지만 PID 제어기는 비선형 또는 환경 변화에 취약점을 가진다. 이러한 문제를 보완하기 위해 퍼지 보상기를 추가하였다. 마지막으로 개선된 성능을 보이기 위해 컴퓨터 시뮬레이션을 통해 제안된 제어기를 평가하였다.

계층적 구조를 가진 Fuzzy Neural Network를 이용한 이동로봇의 주행법 (Navigation Strategy Of Mobile Robots based on Fuzzy Neural Network with Hierarchical Structure)

  • 최정원;한교경;박만식;이석규
    • 한국지능시스템학회논문지
    • /
    • 제11권5호
    • /
    • pp.367-372
    • /
    • 2001
  • 본 논문은 미시공간에서 다수의 로봇들의 자율 이동에 대해 계층적 구조를 가진 퍼지-뉴럴 알고리즘을 제안한다. 이 계층적 알고리즘은 그 하부에 로봇이 목표에 도달하게 하며 주는 퍼지 알고리즘과 주행 중 만날 수 있는 장애물들에 대한 회피를 수행하는 퍼지-뉴럴 알고리즘이 존재하고 상부의 가중치 퍼지 알고리즘은 위의 두 알고리즘에 의한 로봇의 회전각도 와 이동 거리를 합성하여 주위 환경에 대하여 로봇이 지능적인 주행을 수행한 누 있도록 구성되어 있으며 시뮬레이션을 통하여 만족할 만한 결과를 얻을 수 있었다.

  • PDF