• Title/Summary/Keyword: multiple mobile robots

Search Result 132, Processing Time 0.02 seconds

A Method for Real Time Target Following of a Mobile Robot Using Heading and Distance Information (방향각 및 거리 정보에 의한 이동 로봇의 실시간 목표물 추종 방법)

  • Ko, Nak-Yong;Seo, Dong-Jin;Moon, Yong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.624-631
    • /
    • 2008
  • This paper presents a method for a mobile robot to follow a moving object in real time. The robot follows a target object keeping the facing angle toward the target and the distance to the target to given value. The method consists of two procedures: first, the detection of target position in the robot coordinate system, and the second, the calculation of translational velocity and rotational velocity to follow the object:. To detect the target location, range sensor data is represented in histogram. Based on the real time calculation of the location of the target relative to the robot, translational velocity and rotational velocity to follow the target are calculated. The velocities make the heading angle and the distance to target converge toward the desired ones. The performance of the method is tested through simulation. In the simulation, the target moves with three different trajectories, straight line trajectory, rectangular trajectory, and circular trajectory. As shown in the results, it is inevitable to lose track temporarily of the target when the target suddenly changes its motion direction. Nevertheless, the robot speeds up to catch up and finally succeeds to follow the target as soon as possible even in this case. The proposed method can also be utilized to coordinate the motion of multiple robots to keep their formation as well as to follow a target.

Verification of Modified Flocking Algorithm for Group Robot Control (집단 로봇 제어를 위한 수정된 플로킹 알고리즘의 시뮬레이션 검증)

  • Lee, Eun-Bok;Shin, Suk-Hoon;You, Yong-Jun;Chi, Sung-Do;Kim, Jae-Ick
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.4
    • /
    • pp.49-58
    • /
    • 2009
  • Top-down approach in the intelligent robot research has focused on the single object intelligence however, it has two weaknesses. One is that has a high cost and a long spending time of sensing, calculating and communications. The other is the difficulty of responding to react changes in the unpredictable environment. we propose the collective intelligence algorithm based on Bottom-up approach for improving these weaknesses and the applied agent model and verify by simulation. The Modified Flocking Algorithm proposed in this research is the algorithm which is modified version of the concept of the Flocking (Craig Reynolds) which is used to model the flocks, herds, and schools in the graphics or games, and simplified the operation of conventional Flocking algorithm to make it easy to apply for the number of group robots. We modeled the Boid agent and verified possibility collectivization of the Modified Flocking Algorithm by simulation. And We validated by the actual multiple mobile robot experiment.