• Title/Summary/Keyword: multiple materials

Search Result 1,971, Processing Time 0.031 seconds

Growth of Triangular Shaped InGaAs/GaAs Quantum Wire Structure with Various Thicknesses in One Chip (여러 가지 높이를 갖는 삼각형 구조 InGaAs/GaAs 양자세선 구조 성장)

  • Kim Seong-Il;Kim Young-Whan;Han Il-Ki
    • Korean Journal of Materials Research
    • /
    • v.14 no.6
    • /
    • pp.399-401
    • /
    • 2004
  • InGaAs/GaAs quantum wire structures were grown by low pressure metalorganic chemical vapor deposition by using selective area epitaxy.$ In_{ 0.2}$$Ga_{0.8}$ As/GaAs quantum wire structures were grown on a $SiO_2$ masked GaAs substrate. Quantum wire structures with sharp tips and smooth side walls were grown. We have grown InGaAs/GaAs quantum wire structures using variously opened width of the $SiO _2$ mask. Even though the opening widths of $SiO_2$ masked GaAs substrate were different, similar shapes of triangular structures were grown. Using various kinds of differently opened $SiO_2$ masked area, it would be possible to grow quantum wire structures with various thicknesses. The quantum wire structures are formed near the pinnacle of the triangular structure. Therefore, the fabrication of the uniquely designed integrated optical devices which include light emitting sources of multiple wavelength is possible.

Ablation rate study using short pulsed laser subjected to Alumina medium (알루미나 세라믹 소재의 초단파 레이저 어블레이션량 연구)

  • Kim, Kyunghan;Park, Jinho
    • Laser Solutions
    • /
    • v.18 no.4
    • /
    • pp.17-22
    • /
    • 2015
  • In this paper, ablation rate of $Al_2O_3$ ceramics by femtosecond laser fluence is derived with experimental method. The automatic three axis linear stage makes laser optics to move with high spatial resolution. With 10 times objective lens, minimal pattern width of $Al_2O_3$ is measured in the focal plane. Ablated surface area is shown as linear tendency increasing number of machining times with various laser power conditions. Machining times is most sensitive condition to control $Al_2O_3$ pattern width. Also, the linear increment of pattern width with laser power change is investigated. In high machining speed, the ablation volume rate is more linear with fluence because pulse overlap is minimized in this condition. Thermal effect to surrounding medium can be minimized and clean laser process without melting zone is possible in high machining speed. Ablation volume rate decelerates as increasing machining times and multiple machining times should be considered to achieve proper ablation width and depth.

Characterization and expression profiles of aquaporins (AQPs) 1a and 3a in mud loach Misgurnus mizolepis after experimental challenges

  • Lee, Sang Yoon;Nam, Yoon Kwon;Kim, Yi Kyung
    • Fisheries and Aquatic Sciences
    • /
    • v.20 no.9
    • /
    • pp.23.1-23.9
    • /
    • 2017
  • Two distinct cDNAs encoding aquaporins (mmAQPs 1a and 3a) were isolated and characterized from mud loach Misgurnus mizolepis. The identified mud loach AQP cDNAs encode for polypeptides of 260 and 302 amino acids. Topology predictions confirmed six putative membrane-spanning domains connected by five loops and the N- and C-terminal domains being cytoplasmic. The mud loach AQPs 1a and 3a showed broad distribution in multiple tissues including immune-responsive tissues as well as osmoregulatory tissues. Hence, the diversity of AQP distribution and expression possibly indicated its differential functions in the regulation of fluid movement in response to environmental stimuli. The transcription of mmAQP genes was differentially modulated by immune challenges. In particular, the mmAQP3a expression level in the liver was more responsive to immune challenges than that of mmAQP1a. Taken together, fish stimulation or infection resulted in significant modulation of mud loach AQP genes, suggesting potential functional roles of these proteins in piscine pathophysiological process.

Fabrication of Calcium Phosphate Glass Using Eggshell and its Crystallization Behavior

  • Kang, Tea-Sung;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.5
    • /
    • pp.395-399
    • /
    • 2017
  • The thermal properties and crystallization behavior of calcium phosphate glass fabricated using eggshell were examined. Nature eggshell has several impurities in the main component of $CaCO_3$. To manufacture calcium phosphate glass, washed eggshell was dissolved in aqua-regia while adding a solution of isopropyl alcohol, D. I. water and phosphoric acid. The calcined precursor was melted at $1000^{\circ}C$, and the glass ($T_g$ : $540^{\circ}C$) was crystallized at $620{\sim}640^{\circ}C$, which temperature range is relatively low compared to the crystallization temperature of other general types of calcium phosphate glass. The calcium phosphate glass using eggshell was successfully crystallized without any additional nucleating agents due to the multiple effects of impurities such as $Fe_2O_3$, $Al_2O_3$, SrO and $SiO_2$ in the eggshell. The main crystalline phase was ${\beta}-Ca(PO_3)_2$ and a biocompatible material, hydroxyapatite, was also observed. The crystallization process was completed under the condition of a holding time of only 1 h at the low temperature.

Structural Stability for Pt Line and Cross-Bar Sub-Micron Patterns (고정렬 Pt 라인 및 크로스-바 미세패턴의 구조적 안정성 연구)

  • Park, Tae Wan;Park, Woon Ik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.7
    • /
    • pp.510-514
    • /
    • 2018
  • This study discusses and demonstrates the structural stability of highly ordered Pt patterns formed on a transparent and flexible substrate through the process of nanotransfer printing (nTP). Bending tests comprising approximately 1,000 cycles were conducted for observing Pt line patterns with a width of $1{\mu}m$ formed along the direction of the horizontal (x-axis) and vertical (y-axis) axes ($15mm{\times}15mm$); and adhesion tests were performed with an ultrasonicator for a period greater than ten minutes, to analyze the Pt crossbar patterns. The durability of both types of patterns was systematically analyzed by employing various microscopes. The results show that the Pt line and Pt crossbar patterns obtained through nTP are structurally stable and do not exhibit any cracks, breaks, or damages. These results corroborate that nTP is a promising nanotechnology that can be applied to flexible electronic devices. Furthermore, the multiple patterns obtained through nTP can improve the working performance of flexible devices by providing excellent structural stability.

Concrete properties prediction based on database

  • Chen, Bin;Mao, Qian;Gao, Jingquan;Hu, Zhaoyuan
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.343-356
    • /
    • 2015
  • 1078 sets of mixtures in total that include fly ash, slag, and/or silica fume have been collected for prediction on concrete properties. A new database platform (Compos) has been developed, by which the stepwise multiple linear regression (SMLR) and BP artificial neural networks (BP ANNs) programs have been applied respectively to identify correlations between the concrete properties (strength, workability, and durability) and the dosage and/or quality of raw materials'. The results showed obvious nonlinear relations so that forecasting by using nonlinear method has clearly higher accuracy than using linear method. The forecasting accuracy rises along with the increasing of age and the prediction on cubic compressive strength have the best results, because the minimum average relative error (MARE) for 60-day cubic compressive strength was less than 8%. The precision for forecasting of concrete workability takes the second place in which the MARE is less than 15%. Forecasting on concrete durability has the lowest accuracy as its MARE has even reached 30%. These conclusions have been certified in a ready-mixed concrete plant that the synthesized MARE of 7-day/28-day strength and initial slump is less than 8%. The parameters of BP ANNs and its conformation have been discussed as well in this study.

Stack-Structured Phase Change Memory Cell for Multi-State Storage (멀티비트 정보저장을 위한 적층 구조 상변화 메모리에 대한 연구)

  • Lee, Dong-Keun;Kim, Seung-Ju;Ryu, Sang-Ouk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.1
    • /
    • pp.13-17
    • /
    • 2009
  • In PRAM applications, the devices can be made for both binary and multi-state storage. The ability to attain intermediate stages comes either from the fact that some chalcogenide materials can exist in configurations that range from completely amorphous to completely crystalline or from designing device structure such a way that mimics multiple phase chase phenomena in single cell. We have designed stack-structured phase change memory cell which operates as multi-state storage. Amorphous $Ge_xTe_{100-x}$ chalcogenide materials were stacked and a diffusion barrier was chosen for each stack layers. The device is operated by crystallizing each chalcogenide material as sequential manner from the bottom layer to the top layer. The amplitude of current pulse and the duration of pulse width was fixed and number of pulses were controlled to change overall resistance of the phase change memory cell. To optimize operational performance the thickness of each chalcogenide was controlled based on simulation results.

  • PDF

RNA-Seq Analysis of the Arabidopsis Transcriptome in Pluripotent Calli

  • Lee, Kyounghee;Park, Ok-Sun;Seo, Pil Joon
    • Molecules and Cells
    • /
    • v.39 no.6
    • /
    • pp.484-494
    • /
    • 2016
  • Plant cells have a remarkable ability to induce pluripotent cell masses and regenerate whole plant organs under the appropriate culture conditions. Although the in vitro regeneration system is widely applied to manipulate agronomic traits, an understanding of the molecular mechanisms underlying callus formation is starting to emerge. Here, we performed genome-wide transcriptome profiling of wild-type leaves and leaf explant-derived calli for comparison and identified 10,405 differentially expressed genes (> two-fold change). In addition to the well-defined signaling pathways involved in callus formation, we uncovered additional biological processes that may contribute to robust cellular dedifferentiation. Particular emphasis is placed on molecular components involved in leaf development, circadian clock, stress and hormone signaling, carbohydrate metabolism, and chromatin organization. Genetic and pharmacological analyses further supported that homeostasis of clock activity and stress signaling is crucial for proper callus induction. In addition, gibberellic acid (GA) and brassinosteroid (BR) signaling also participates in intricate cellular reprogramming. Collectively, our findings indicate that multiple signaling pathways are intertwined to allow reversible transition of cellular differentiation and dedifferentiation.

Users' Perceptions and Attitudes Regarding Use of Korean Traditional Elements in Contemporary Spaces: Focused on the Article Contents of Professional Design Magazines (현대공간의 전통요소에 대한 사용자 인식과 태도: 전문 디자인잡지의 기사 내용을 중심으로)

  • Lee, Min-Ah
    • Journal of the Korean Home Economics Association
    • /
    • v.48 no.7
    • /
    • pp.77-87
    • /
    • 2010
  • This study investigated users' perceptions and attitudes toward Korean traditional elements in contemporary spaces. We collected and analyzed the article contents of two design magazines, from their issues of January 2000 through December 2009, for a total of 87 cases. The results were as follows. First, the important motives for applying traditional elements to current living spaces were individual tastes, preference for a secluded life, and the users' childhood memories. Second, the most frequently used traditional element was traditional structure. Others were traditional spatial compositions and the use of natural materials. The two main purposes for renovating a space or constructing a building were to preserve traditional ambience or to add convenience and practical use to it. Third, the most frequently mentioned advantages of traditional elements were their environment-friendly characteristics, such as connecting to nature and using natural materials. Fourth, the users preferred, in order, Ma-dang, natural environments, doors/windows of various types and multiple functions, Toet-maru, Dae-cheong, and Nu-maru.

The Effect of Ageing on the Transformation Behavior of Ti-50.4at.% Ni Alloy(II) (Ti-50.4at.%Ni합금의 변태거동에 미치는 시효처리의 영향(II))

  • Kim, Sung-Jin;Woo, Heung-Sik;Park, Sung-Bum
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.27-33
    • /
    • 2005
  • The shape memory effect in Ti-50.4at.%Ni alloy after solution treatment at 1273K for 2h and aged at 350, 450, $550^{\circ}C$ for 0.5, 1, 1.5, 2, 4, 10hrs had been investigated by differential scanning calorimetry measurement. It was found that ageing in the temperature range of $350^{\circ}C{\sim}550^{\cric}C$ induced complex transformation behavior, involving the R-phase and multiple-stage martensitic transformation. Usually aged Ni-rich NiTi alloys undergo martensitic transformation on cooling from high temperatures in two step : Austenite to R-phase and then R-phase to Martensite (normal behavior). In sample aged at $350^{\circ}C$ two distinct DSC peaks arised giving evidence of intermediate stages of martensite transformation. This results in the nucleation and growth of coherent $Ni_4Ti_3$-precipitate. These explain all features of the evolution of DSC charts during ageing including the number of distinct DS peaks and their positions.