• Title/Summary/Keyword: multiple materials

Search Result 1,976, Processing Time 0.028 seconds

MRI Evaluation of Suspected Pathologic Fracture at the Extremities from Metastasis: Diagnostic Value of Added Diffusion-Weighted Imaging

  • Sun-Young Park;Min Hee Lee;Ji Young Jeon;Hye Won Chung;Sang Hoon Lee;Myung Jin Shin
    • Korean Journal of Radiology
    • /
    • v.20 no.5
    • /
    • pp.812-822
    • /
    • 2019
  • Objective: To assess the diagnostic value of combining diffusion-weighted imaging (DWI) with conventional magnetic resonance imaging (MRI) for differentiating between pathologic and traumatic fractures at extremities from metastasis. Materials and Methods: Institutional Review Board approved this retrospective study and informed consent was waived. This study included 49 patients each with pathologic and traumatic fractures at extremities. The patients underwent conventional MRI combined with DWI. For qualitative analysis, two radiologists (R1 and R2) independently reviewed three imaging sets with a crossover design using a 5-point scale and a 3-scale confidence level: DWI plus non-enhanced MRI (NEMR; DW set), NEMR plus contrast-enhanced fat-saturated T1-weighted imaging (CEFST1; CE set), and DWI plus NEMR plus CEFST1 (combined set). McNemar's test was used to compare the diagnostic performances among three sets and perform subgroup analyses (single vs. multiple bone abnormality, absence/presence of extra-osseous mass, and bone enhancement at fracture margin). Results: Compared to the CE set, the combined set showed improved diagnostic accuracy (R1, 84.7 vs. 95.9%; R2, 91.8 vs. 95.9%, p < 0.05) and specificity (R1, 71.4% vs. 93.9%, p < 0.005; R2, 85.7% vs. 98%, p = 0.07), with no difference in sensitivities (p > 0.05). In cases of absent extra-osseous soft tissue mass and present fracture site enhancement, the combined set showed improved accuracy (R1, 82.9-84.4% vs. 95.6-96.3%, p < 0.05; R2, 90.2-91.1% vs. 95.1-95.6%, p < 0.05) and specificity (R1, 68.3-72.9% vs. 92.7-95.8%, p < 0.005; R2, 83.0-85.4% vs. 97.6-98.0%, p = 0.07). Conclusion: Combining DWI with conventional MRI improved the diagnostic accuracy and specificity while retaining sensitivity for differentiating between pathologic and traumatic fractures from metastasis at extremities.

Prediction of Pulmonary Function in Patients with Chronic Obstructive Pulmonary Disease: Correlation with Quantitative CT Parameters

  • Hyun Jung Koo;Sang Min Lee;Joon Beom Seo;Sang Min Lee;Namkug Kim;Sang Young Oh;Jae Seung Lee;Yeon-Mok Oh
    • Korean Journal of Radiology
    • /
    • v.20 no.4
    • /
    • pp.683-692
    • /
    • 2019
  • Objective: We aimed to evaluate correlations between computed tomography (CT) parameters and pulmonary function test (PFT) parameters according to disease severity in patients with chronic obstructive pulmonary disease (COPD), and to determine whether CT parameters can be used to predict PFT indices. Materials and Methods: A total of 370 patients with COPD were grouped based on disease severity according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) I-IV criteria. Emphysema index (EI), air-trapping index, and airway parameters such as the square root of wall area of a hypothetical airway with an internal perimeter of 10 mm (Pi10) were measured using automatic segmentation software. Clinical characteristics including PFT results and quantitative CT parameters according to GOLD criteria were compared using ANOVA. The correlations between CT parameters and PFT indices, including the ratio of forced expiratory volume in one second to forced vital capacity (FEV1/FVC) and FEV1, were assessed. To evaluate whether CT parameters can be used to predict PFT indices, multiple linear regression analyses were performed for all patients, Group 1 (GOLD I and II), and Group 2 (GOLD III and IV). Results: Pulmonary function deteriorated with increase in disease severity according to the GOLD criteria (p < 0.001). Parenchymal attenuation parameters were significantly worse in patients with higher GOLD stages (P < 0.001), and Pi10 was highest for patients with GOLD III (4.41 ± 0.94 mm). Airway parameters were nonlinearly correlated with PFT results, and Pi10 demonstrated mild correlation with FEV1/FVC in patients with GOLD II and III (r = 0.16, p = 0.06 and r = 0.21, p = 0.04, respectively). Parenchymal attenuation parameters, airway parameters, EI, and Pi10 were identified as predictors of FEV1/FVC for the entire study sample and for Group 1 (R2 = 0.38 and 0.22, respectively; p < 0.001). However, only parenchymal attenuation parameter, EI, was identified as a predictor of FEV1/FVC for Group 2 (R2 = 0.37, p < 0.001). Similar results were obtained for FEV1. Conclusion: Airway and parenchymal attenuation parameters are independent predictors of pulmonary function in patients with mild COPD, whereas parenchymal attenuation parameters are dominant independent predictors of pulmonary function in patients with severe COPD.

Quality Reporting of Radiomics Analysis in Mild Cognitive Impairment and Alzheimer's Disease: A Roadmap for Moving Forward

  • So Yeon Won;Yae Won Park;Mina Park;Sung Soo Ahn;Jinna Kim;Seung-Koo Lee
    • Korean Journal of Radiology
    • /
    • v.21 no.12
    • /
    • pp.1345-1354
    • /
    • 2020
  • Objective: To evaluate radiomics analysis in studies on mild cognitive impairment (MCI) and Alzheimer's disease (AD) using a radiomics quality score (RQS) system to establish a roadmap for further improvement in clinical use. Materials and Methods: PubMed MEDLINE and EMBASE were searched using the terms 'cognitive impairment' or 'Alzheimer' or 'dementia' and 'radiomic' or 'texture' or 'radiogenomic' for articles published until March 2020. From 258 articles, 26 relevant original research articles were selected. Two neuroradiologists assessed the quality of the methodology according to the RQS. Adherence rates for the following six key domains were evaluated: image protocol and reproducibility, feature reduction and validation, biologic/clinical utility, performance index, high level of evidence, and open science. Results: The hippocampus was the most frequently analyzed (46.2%) anatomical structure. Of the 26 studies, 16 (61.5%) used an open source database (14 from Alzheimer's Disease Neuroimaging Initiative and 2 from Open Access Series of Imaging Studies). The mean RQS was 3.6 out of 36 (9.9%), and the basic adherence rate was 27.6%. Only one study (3.8%) performed external validation. The adherence rate was relatively high for reporting the imaging protocol (96.2%), multiple segmentation (76.9%), discrimination statistics (69.2%), and open science and data (65.4%) but low for conducting test-retest analysis (7.7%) and biologic correlation (3.8%). None of the studies stated potential clinical utility, conducted a phantom study, performed cut-off analysis or calibration statistics, was a prospective study, or conducted cost-effectiveness analysis, resulting in a low level of evidence. Conclusion: The quality of radiomics reporting in MCI and AD studies is suboptimal. Validation is necessary using external dataset, and improvements need to be made to feature reproducibility, feature selection, clinical utility, model performance index, and pursuits of a higher level of evidence.

Performance of ChatGPT on the Korean National Examination for Dental Hygienists

  • Soo-Myoung Bae;Hye-Rim Jeon;Gyoung-Nam Kim;Seon-Hui Kwak;Hyo-Jin Lee
    • Journal of dental hygiene science
    • /
    • v.24 no.1
    • /
    • pp.62-70
    • /
    • 2024
  • Background: This study aimed to evaluate ChatGPT's performance accuracy in responding to questions from the national dental hygienist examination. Moreover, through an analysis of ChatGPT's incorrect responses, this research intended to pinpoint the predominant types of errors. Methods: To evaluate ChatGPT-3.5's performance according to the type of national examination questions, the researchers classified 200 questions of the 49th National Dental Hygienist Examination into recall, interpretation, and solving type questions. The researchers strategically modified the questions to counteract potential misunderstandings from implied meanings or technical terminology in Korea. To assess ChatGPT-3.5's problem-solving capabilities in applying previously acquired knowledge, the questions were first converted to subjective type. If ChatGPT-3.5 generated an incorrect response, an original multiple-choice framework was provided again. Two hundred questions were input into ChatGPT-3.5 and the generated responses were analyzed. After using ChatGPT, the accuracy of each response was evaluated by researchers according to the types of questions, and the types of incorrect responses were categorized (logical, information, and statistical errors). Finally, hallucination was evaluated when ChatGPT provided misleading information by answering something that was not true as if it were true. Results: ChatGPT's responses to the national examination were 45.5% accurate. Accuracy by question type was 60.3% for recall and 13.0% for problem-solving type questions. The accuracy rate for the subjective solving questions was 13.0%, while the accuracy for the objective questions increased to 43.5%. The most common types of incorrect responses were logical errors 65.1% of all. Of the total 102 incorrectly answered questions, 100 were categorized as hallucinations. Conclusion: ChatGPT-3.5 was found to be limited in its ability to provide evidence-based correct responses to the Korean national dental hygiene examination. Therefore, dental hygienists in the education or clinical fields should be careful to use artificial intelligence-generated materials with a critical view.

Predictions of PD-L1 Expression Based on CT Imaging Features in Lung Squamous Cell Carcinoma (편평세포폐암에서 CT 영상 소견을 이용한 PD-L1 발현 예측)

  • Seong Hee Yeo;Hyun Jung Yoon;Injoong Kim;Yeo Jin Kim;Young Lee;Yoon Ki Cha;So Hyeon Bak
    • Journal of the Korean Society of Radiology
    • /
    • v.85 no.2
    • /
    • pp.394-408
    • /
    • 2024
  • Purpose To develop models to predict programmed death ligand 1 (PD-L1) expression in pulmonary squamous cell carcinoma (SCC) using CT. Materials and Methods A total of 97 patients diagnosed with SCC who underwent PD-L1 expression assay were included in this study. We performed a CT analysis of the tumors using pretreatment CT images. Multiple logistic regression models were constructed to predict PD-L1 positivity in the total patient group and in the 40 advanced-stage (≥ stage IIIB) patients. The area under the receiver operating characteristic curve (AUC) was calculated for each model. Results For the total patient group, the AUC of the 'total significant features model' (tumor stage, tumor size, pleural nodularity, and lung metastasis) was 0.652, and that of the 'selected feature model' (pleural nodularity) was 0.556. For advanced-stage patients, the AUC of the 'selected feature model' (tumor size, pleural nodularity, pulmonary oligometastases, and absence of interstitial lung disease) was 0.897. Among these factors, pleural nodularity and pulmonary oligometastases had the highest odds ratios (8.78 and 16.35, respectively). Conclusion Our model could predict PD-L1 expression in patients with lung SCC, and pleural nodularity and pulmonary oligometastases were notable predictive CT features of PD-L1.

Comparison of Raw Material Inventory Management Policies for a Precast Concrete Production Plant (프리캐스트 콘크리트 제작공장에 대한 원자재 재고관리 정책 비교)

  • Kwon, Hyeonju;Jeon, Sangwon;Lee, Jaeil;Jeong, Keunchae
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.5
    • /
    • pp.41-54
    • /
    • 2024
  • In this study, we compare and analyze the performance of three inventory management policies for raw material inventory management in a Precast Concrete production plant: Fixed Order Quantity Policy (FOQP), Fixed Order Interval Policy (FOIP), and (s, S) Ordering Policy (sSOP). In order to make more realistic conclusion, we developed and utilized the ARENA simulation model, a performance evaluation tool that considers the variance of raw material demand and supply for the entire production process in a PC production plant using multiple raw materials. For the three policies, reorder point, order quantity, target level, and order interval parameters were initialized by using Economic Order Quantity (EOQ) model and then optimized through OptQuest. As a result of optimization, inventory management costs were reduced by an average of 97.28% compared to the EOQ model that does not consider the variance of demand and supply. After setting three influencing factors, Project Occurrence Cycle (POC), Raw Material Lead-time (RML), and Unit Stock-out Cost (USC), a performance evaluation was conducted for the three policies. As a result of evaluation, the inventory management costs of FOQP and sSOP, which determine order intervals by considering inventory levels by real-time or daily, were 30.6% and 27.9% lower than FOIP with fixed order intervals respectively. In addition, inventory management costs were affected by RML and USC factors excluding POC, but the differences were 2.17% and 2.09% respectively, which were not large due to the optimization of parameters for responding the variance of raw material demand and supply.

Development of a dual-mode energy-resolved neutron imaging detector: High spatial resolution and large field of view

  • Wenqin Yang;Jianrong Zhou;Jianqing Yang;Xingfen Jiang;Jinhao Tan;Lin Zhu;Xiaojuan Zhou;Yuanguang Xia;Li Yu;Xiuku Wang;Haiyun Teng;Jiajie Li;Yongxiang Qiu;Peixun Shen;Songlin Wang;Yadong Wei;Yushou Song;Jian Zhuang;Yubin Zhao;Junrong Zhang;Zhijia Sun;Yuanbo Chen
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2799-2805
    • /
    • 2024
  • Energy-resolved neutron imaging is an effective way to investigate the internal structure and residual stress of materials. Different sample sizes have varying requirements for the detector's imaging field of view (FOV) and spatial resolution. Therefore, a dual-mode energy-resolved neutron imaging detector was developed, which mainly consisted of a neutron scintillator screen, a mirror, imaging lenses, and a time-stamping optical fast camera. This detector could operate in a large FOV mode or a high spatial resolution mode. To evaluate the performance of the detector, the neutron wavelength spectra and the multiple spatial resolution tests were conducted at CSNS. The results demonstrated that the detector accurately measured the neutron wavelength spectra selected by a bandwidth chopper. The best spatial resolution was about 20 ㎛ in high spatial resolution mode after event reconstruction, and a FOV of 45.0 mm × 45.0 mm was obtained in large FOV mode. The feasibility was validated to change the spatial resolution and FOV by replacing the scintillator screen and adjusting the lens magnification.

Ultrasound-Guided Percutaneous Biopsy With Needle Track Plugging in Patients With Focal Liver Lesions on an Outpatient Basis: A Randomized Controlled Trial

  • Ja Kyung Yoon;Choong-kun Lee;Hongjeong Yoon;Hye Jin Choi;Seung-seob Kim
    • Korean Journal of Radiology
    • /
    • v.25 no.10
    • /
    • pp.902-912
    • /
    • 2024
  • Objective: The increasing utilization of various molecular tests for diagnosing and selecting treatments for patients with malignancies has led to a rising trend in both the frequency of biopsies and the required tissue volume. We aimed to compare the safety of outpatient ultrasound (US)-guided percutaneous liver biopsy (PLB) between the coaxial method with needle track plugging (NTP) and the conventional method. Materials and Methods: This single-center, prospective, randomized controlled study was conducted from October 2022 to May 2023. Patients referred for US-guided PLB with target liver lesions measuring ≥1 cm and requiring ≥3 tissue cores were enrolled. Patients with severe coagulopathy or a substantial volume of ascites were excluded. Patients were randomly assigned to undergo PLB using either the coaxial method with NTP or the conventional method, in a 1:1 ratio, and were subsequently discharged after 2 hours. The primary endpoint was the presence of a patent track sign, defined as a linear color flow along the biopsy track on Doppler US, as an indication of bleeding. The secondary endpoints included clinically significant bleeding, delayed bleeding after discharge, and diagnostic yield. The incidences of these endpoints were compared between the two methods. Results: A total of 107 patients completed the study protocol. Patent track signs were observed significantly less frequently in the coaxial method with NTP group than in the conventional method group: 16.7% (9/54) vs. 35.8% (19/53; P = 0.042). Clinically significant bleeding and delayed bleeding did not occur in either group, and both methods achieved a high diagnostic yield: 94.4% (51/54) vs. 98.1% (52/53; P = 0.624). Conclusion: Compared with the conventional method, the coaxial method with NTP may potentially be safer, with a reduced risk of overall bleeding complications after PLB when retrieving ≥3 tissue cores. The coaxial method with NTP could be considered a viable option for acquiring multiple liver tissues on an outpatient basis.

Factors associated with side effects of COVID-19 vaccine in Indonesia

  • Johan Wibowo;Rivaldo Steven Heriyanto;Felix Wijovi;Devina Adella Halim;Claudia Claudia;Elizabeth Marcella;Billy Susanto;Michele Indrawan;Nadia Khoirunnisa Heryadi;Michelle Imanuelly;Jonathan Juniard Anurantha;Timotius Ivan Hariyanto;Chintya Marcellin;Terry Devita Sinaga;Saraswati Anindita Rizki;Novia Sieto;Jeremia Immanuel Siregar;Nata Pratama Hardjo Lugito;Andree Kurniawan
    • Clinical and Experimental Vaccine Research
    • /
    • v.11 no.1
    • /
    • pp.89-95
    • /
    • 2022
  • Purpose: As coronavirus disease 2019 (COVID-19) continues to spread rapidly causing approximately 186 million confirmed cases around the world, the urgency to reach herd immunity through vaccination is increasing. However, vaccine safety is a top priority to limit the occurrence of adverse events. Henceforth, this study aims to recognize and perceive COVID-19 vaccine safety in Indonesia during the pandemic. Materials and Methods: This is a cross-sectional study and was conducted in Indonesia during the COVID-19 pandemic using an online survey of demographic information and a qualitative questionnaire. Responses were recorded and the association between demographic characteristics from survey questions was tested using chi-square with a risk estimate and 95% confidence interval. Results: A total of 311 participants from 33 out of 34 provinces in Indonesia participated in this study. Recorded responses showed multiple side effects of the COVID-19 vaccine both short-and long-term experienced by the participants. Significant associations were found between demographic factors and COVID-19 vaccine side effects such as female gender with short-term puncture site (odds ratio [OR], 0.463; 95% confidence interval [CI], 0.263-0.816) and short-term other reactions (OR, 0.463; 95% CI, 0.263-0.816), domicile outside Java island with long-term puncture site (OR, 4.219; 95% CI, 1.401-12.701) and immune reactions (OR, 3.375; 95% CI, 1.356-8.398), also between married marital status and long-term vagal reaction (OR, 4.655; 95% CI, 1.321-16.409). Conclusion: Gender, domicile and marital status factors were associated with COVID-19 vaccine side effects in Indonesian people.

Efficient Red-Color Emission of InGaN/GaN Double Hetero-Structure Formed on Nano-Pyramid Structure

  • Go, Yeong-Ho;Kim, Je-Hyeong;Gong, Su-Hyeon;Kim, Ju-Seong;Kim, Taek;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.174-175
    • /
    • 2012
  • (In, Ga) N-based III-nitride semiconductor materials have been viewed as the most promising materials for the applications of blue and green light emitting devices such as light-emitting diodes (LEDs) and laser diodes. Although the InGaN alloy can have wide range of visible wavelength by changing the In composition, it is very hard to grow high quality epilayers of In-rich InGaN because of the thermal instability as well as the large lattice and thermal mismatches. In order to avoid phase separation of InGaN, various kinds of structures of InGaN have been studied. If high-quality In-rich InGaN/GaN multiple quantum well (MQW) structures are available, it is expected to achieve highly efficient phosphor-free white LEDs. In this study, we proposed a novel InGaN double hetero-structure grown on GaN nano-pyramids to generate broad-band red-color emission with high quantum efficiency. In this work, we systematically studied the optical properties of the InGaN pyramid structures. The nano-sized hexagonal pyramid structures were grown on the n-type GaN template by metalorganic chemical vapor deposition. SiNx mask was formed on the n-type GaN template with uniformly patterned circle pattern by laser holography. GaN pyramid structures were selectively grown on the opening area of mask by lateral over-growth followed by growth of InGaN/GaN double hetero-structure. The bird's eye-view scanning electron microscope (SEM) image shows that uniform hexagonal pyramid structures are well arranged. We showed that the pyramid structures have high crystal quality and the thickness of InGaN is varied along the height of pyramids via transmission electron microscope. Because the InGaN/GaN double hetero-structure was grown on the nano-pyramid GaN and on the planar GaN, simultaneously, we investigated the comparative study of the optical properties. Photoluminescence (PL) spectra of nano-pyramid sample and planar sample measured at 10 K. Although the growth condition were exactly the same for two samples, the nano-pyramid sample have much lower energy emission centered at 615 nm, compared to 438 nm for planar sample. Moreover, nano-pyramid sample shows broad-band spectrum, which is originate from structural properties of nano-pyramid structure. To study thermal activation energy and potential fluctuation, we measured PL with changing temperature from 10 K to 300 K. We also measured PL with changing the excitation power from 48 ${\mu}W$ to 48 mW. We can discriminate the origin of the broad-band spectra from the defect-related yellow luminescence of GaN by carrying out PL excitation experiments. The nano-pyramid structure provided highly efficient broad-band red-color emission for the future applications of phosphor-free white LEDs.

  • PDF