DOI QR코드

DOI QR Code

Comparison of Raw Material Inventory Management Policies for a Precast Concrete Production Plant

프리캐스트 콘크리트 제작공장에 대한 원자재 재고관리 정책 비교

  • Kwon, Hyeonju (DL E&C Co. Ltd. ) ;
  • Jeon, Sangwon (Won Construction Co. Ltd. ) ;
  • Lee, Jaeil (Daejeon Regional Office of Construction Management ) ;
  • Jeong, Keunchae (School of Civil Engineering, Chungbuk National University)
  • 권현주 (DL이앤씨(주) ) ;
  • 전상원 ((주)원건설 ) ;
  • 이재일 (대전지방국토관리청) ;
  • 정근채 (충북대학교 토목공학부)
  • Received : 2023.12.26
  • Accepted : 2024.04.16
  • Published : 2024.09.30

Abstract

In this study, we compare and analyze the performance of three inventory management policies for raw material inventory management in a Precast Concrete production plant: Fixed Order Quantity Policy (FOQP), Fixed Order Interval Policy (FOIP), and (s, S) Ordering Policy (sSOP). In order to make more realistic conclusion, we developed and utilized the ARENA simulation model, a performance evaluation tool that considers the variance of raw material demand and supply for the entire production process in a PC production plant using multiple raw materials. For the three policies, reorder point, order quantity, target level, and order interval parameters were initialized by using Economic Order Quantity (EOQ) model and then optimized through OptQuest. As a result of optimization, inventory management costs were reduced by an average of 97.28% compared to the EOQ model that does not consider the variance of demand and supply. After setting three influencing factors, Project Occurrence Cycle (POC), Raw Material Lead-time (RML), and Unit Stock-out Cost (USC), a performance evaluation was conducted for the three policies. As a result of evaluation, the inventory management costs of FOQP and sSOP, which determine order intervals by considering inventory levels by real-time or daily, were 30.6% and 27.9% lower than FOIP with fixed order intervals respectively. In addition, inventory management costs were affected by RML and USC factors excluding POC, but the differences were 2.17% and 2.09% respectively, which were not large due to the optimization of parameters for responding the variance of raw material demand and supply.

본 연구에서는 프리캐스트 콘크리트(Precast Concrete; PC) 제작공장의 원자재 재고관리를 위한 세 가지 재고관리 정책, 정량 발주 방식, 정기 발주 방식, (s, S) 발주 방식의 성능을 비교·분석한다. 보다 현실적인 결론의 도출을 위해, 복수 원자재를 사용하는 PC 제작공장의 전체 공정을 대상으로 원자재 수요 및 공급 측면의 변동성을 고려하여 개발된 성능평가 도구인 ARENA 시뮬레이션 모델을 활용하였다, 성능 비교를 위해, 먼저 세 가지 재고관리 정책에 대해 경제적주문량(Economic Order Quantity; EOQ)을 초깃값으로 하여 OptQuest를 통해 재주문점, 주문량, 목표수준 및 주문주기 모수를 최적화하였다. 최적화 결과, 수요 및 공급 측면의 변동성을 고려하지 않는 EOQ 방식에 비해 재고관리 비용을 평균 97.28% 감소시킬 수 있었다. 이후, 프로젝트 발생 주기, 원자재 조달기간, 단위 품절비용 등 세 가지 영향 요인을 설정한 후 세 가지 재고관리 정책에 대한 성능 비교 실험을 수행하였다. 실험 결과, 실시간 또는 매일 재고수준을 파악하여 주문 시점을 결정하는 정량 발주 방식과 (s, S) 발주 방식의 재고관리 비용이 고정 주문주기를 갖는 정기 발주 방식보다 각각 30.6%와 27.9% 낮게 나타났다. 또한, 재고관리 비용은 프로젝트 발생 주기를 제외한 원자재 조달기간과 단위 품절 비용 요인에 의해 영향을 받는 것으로 나타났지만, 그 차이는 2.17%와 2.09%로 수요 및 공급의 변동성 대응을 위한 모수 최적화 과정으로 인해 크지 않았다.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.2020R1F1A1048256). 시뮬레이션 모델링을 위한 자료 수집에 도움을 주신 (주)동서피씨씨 청안 공장 생산관리팀 유승민 사원께 감사드립니다.

References

  1. Ashika M., and Monisha V. (2020). "A Material Management in Construction Project Using Inventory Management System." International Journal for Modern Trends in Science and Technology, 6(5), pp. 32-40.
  2. Im, K.S., Han, S.H., Jung, D.Y., Ryu, C.K., and Choi, S.J. (2008). "Inventory Management in Construction Operations Involving on-site Fabrication of Raw Materials." Korean Journal of Construction Engineering and Management, KICEM, 9(1), pp. 187-198.
  3. Kim, D.S., Kim, K.R., Cha, H.S., and Shin, D.W. (2013). "A Study on the Strategy for Creating Demand of Modular Construction through Case Analysis by Building Type." Korean Journal of Construction Engineering and Management, KICEM, 14(5), pp. 164-174.
  4. Kim, G.H., Lee, S.H., Yun, J.S., Park, K.M., and Kim, C.D. (2013). "An Optimal Inventory Management System for High-Rise Building." KIEAE Journal , Korea Institute of Ecological Architecture and Environment, 13(1), pp. 151-157.
  5. Kim, S.H., Kim, G.H., and Kang, K.I. (2004). "A Study on the Effective Inventory Management by Optimizing Lot Size in Building Construction."Journal of the Korea Institute of Building Construction, KIC, 4(2), pp. 73-80.
  6. Kim, Y.H., Yoon, H.S., Lee, J.H., and Kang, L.S. (2023). "Onsite Inventory Management Plan for Construction Materials Considering Activity Float Time and Size of a Stock Yard." Journal of Civil and Environmental Engineering Research, KSCE, 43(1), pp. 79-89.
  7. Kwon, H.J., Jeon, S.W., Lee, J.I., and Jeong, K.C. (2021). "Development of a Simulation Model for Supply Chain Management of Precast Concrete." Korean Journal of Construction Engineering and Management , KICEM, 22(5), pp. 86-98.
  8. Lee, H.Y. (2015). Research Methodology 2nd Edition , Cheongram.
  9. Lee, J.E. (2020). "Advancement Plan of Modular Architecture." Construction Technology Review SSANGYONG, Ssangyong, 77, pp. 39-44.
  10. Lee, J.M., Yu, J.H., Kim, C.D., Lee, K.J., and Lim, B.S. (2008). "Order Point Determination Method Considering Materials Demand Variation of Construction Site." Journal of the Architectural Institute of Korea , Architectural Institute of Korea, 24(10), pp. 117-125.
  11. Lee, K.B., Kim, K.R., Shin, D.W., and Cha, H.S. (2011). "A Proposal for Optimizing Unit Modular System Process to Improve Efficiency in Off-site Manufacture, Transportation and On-site Installation." Korean Journal of Construction Engineering and Management, KICEM, 12(6), pp. 14-21.
  12. Lee, S.B. (2004). "A Study on Optimal Lead Time Selection Measures of the Construction Materials."The Journal of the Korea Institute of Building Construction, The Korea Institute of Building Construction, 4(1), pp. 105-110.
  13. Luchko, M.R., Lukanovska, I.R., and Ratynskyi, V. (2019). "Modelling Inventory Management: Separate Issues for Construction and Application." International Journal of Production Management and Engineering , 7(2), pp. 117-124.
  14. Mohammadnazari, Z. and Ghannadpour, S.F. (2019). "Sustainable Construction Supply Chain Management with the Spotlight of Inventory Optimization under Uncertainty." Environment, Development and Sustainability , 23(7), pp. 10937-10972.
  15. Rockwell Automation (2020). Arena Simulation Software (16.00.00). http://www.rockwellautomation.com
  16. Rzepecki, R. (2019). "Optimization of Inventory Costs Management in the Construction Enterprise." IOP Conference Series: Materials Science and Engineering, IOP Publishing, 603(3), pp. 1-9.
  17. Stevenson, W.J. and Sum, C.C. (2015). Operations Management 2nd Edition, Mc Graw Hill Education.
  18. Yun, J.S., Yu, J.H., and Kim, C.D. (2011). "Economic Order Quantity(EOQ) Determination Process for Construction Material Considering Demand Variation and Stockyard Availability." Korean Journal of Construction Engineering and Management, KICEM, 12(1), pp. 33-42.
  19. IBM SPSS (2024). Testing the equality of group variances https://www.ibm.com/docs/ko/spss-statistics/28.0.0?topic=variances-levene-test-table