• Title/Summary/Keyword: multiple geometry

Search Result 260, Processing Time 0.023 seconds

The Geometry Prediction of Back-bead in Arc Welding

  • Lee, Jeong-Ick;Koh, Byung-Kab
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.84-89
    • /
    • 2007
  • This research was done on the basis of assumption that there is a relationship between welding parameters and geometry of the back-bead being a gap in arc welding. Multiple regression analysis was used as method for predicting the geometry of the back-bead. The analysis data and the verification data were used for the formation of multiple regression analysis. The method was used to perform the prediction of the back-bead.

Procedural Geometry Calibration and Color Correction ToolKit for Multiple Cameras (절차적 멀티카메라 기하 및 색상 정보 보정 툴킷)

  • Kang, Hoonjong;Jo, Dongsik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.615-618
    • /
    • 2021
  • Recently, 3D reconstruction of real objects with multi-cameras has been widely used for many services such as VR/AR, motion capture, and plenoptic video generation. For accurate 3D reconstruction, geometry and color matching between multiple cameras will be needed. However, previous calibration and correction methods for geometry (internal and external parameters) and color (intensity) correction is difficult for non-majors to perform manually. In this paper, we propose a toolkit with procedural geometry calibration and color correction among cameras with different positions and types. Our toolkit consists of an easy user interface and turned out to be effective in setting up multi-cameras for reconstruction.

Implementing Geometry Packing for MPEG Immersive Video (MPEG 몰입형 비디오를 위한 Geometry Packing 구현)

  • Jong-Beom, Jeong;Soonbin, Lee;Eun-Seok, Ryu
    • Journal of Broadcast Engineering
    • /
    • v.27 no.6
    • /
    • pp.861-871
    • /
    • 2022
  • The moving picture experts group (MPEG) developed the MPEG immersive video (MIV) standard for efficient compression of multiple immersive videos representing natural contents and computer graphics. The MIV compresses multiple immersive videos and generates multiple output videos which are defined as atlases. However, there is a synchronization issue of multiple decoders in a legacy device when decoding multiple encoded atlases. This paper proposes and implements the geometry packing method for adaptive control of decoder instances for low-end and high-end devices. The proposed method on the recent version of the MIV reference software worked correctly.

MULTIPLE SOLUTIONS FOR A SUSPENDING BEAM EQUATION AND THE GEOMETRY OF THE MAPPING

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.2
    • /
    • pp.211-218
    • /
    • 2009
  • We investigate the multiple solutions for a suspending beam equation with jumping nonlinearity crossing three eigenvalues, with Dirichlet boundary condition and periodic condition. We show the existence of at least six nontrivial periodic solutions for the equation by using the finite dimensional reduction method and the geometry of the mapping.

  • PDF

GRAVITATIONAL LENSING AND THE GEOMETRY OF THE UNIVERSE

  • Park, Myeong-Gu
    • Publications of The Korean Astronomical Society
    • /
    • v.7 no.1
    • /
    • pp.79-87
    • /
    • 1992
  • New and improved data on the gravitational lens systems discovered so far are compared with the theoretical predictions of Gott, Park, and Lee (1989, GPL). Systems lensed by a single galaxy, compatible with assumptions of GPL, support flat or near-flat geometry for the universe. But the statistical uncertainty is too large to draw any definite conclusion. We need more lens systems. Also, the probability of multiple image lensing and mean separation of the images averaged over the source distribution are calculated for various cosmological models. Multiple-image lens systems and radio ring systems are compared with the predictions. Although the data reject exotic cosmological models, it cannot discriminate among conventional Friedmann models yet.

  • PDF

A Study on Development of Algorithm for Predicting the Optimized Process Parameters on Bead Geometry (임의의 비드형상을 의한 최적의 공정변수 예측 알고리즘 개발에 관한 연구)

  • 김일수;차용훈;이연신;박창언;손준식
    • Journal of Welding and Joining
    • /
    • v.17 no.4
    • /
    • pp.39-45
    • /
    • 1999
  • The procedure of robotic Gas metal Arc (GMA) welding in order to achieve the optimized bead geometry needs the selection of suitable process parameters such as arc current, welding voltage, welding speed. It is required the relationships between process parameters and bead geometry. The objective of this paper is to develop the algorithm that enables the determination of process parameters from the optimized bead geometry for robotic GMA welding. It depends on the inversion of empirical equations derived from multiple regression analysis of the relationships between the process parameters and the bead dimensions using the least square method. The method not only directly determines those parameters which will give the desired set of bead geometry, but also avoids the need to iterate with a succession of guesses employed Finite Element Method(FEM). These results suggest that process parameter from experimental equation for robotic GMA welding may be employed to monitor and control the bead geometry in real time.

  • PDF

A study on development of the system for prediction of bead geometry using Rapid Prototyping (RP를 이용한 용접비드 형상예측 시스템 개발에 관한 연구)

  • ;;Prasad K.D.V. Yarlagadda
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.637-642
    • /
    • 2002
  • Generally, the use of robots in manufacturing industry has been increased during the past decade. GMA(Gas Metal Are) welding is an actively growing area and many new procedures have been developed for use with high strength alloys. One of the basic requirement for welding applications is to study relationships between process parameters and bead geometry. The objective of this paper is to develop a new approach involving the use of neural network and multiple regression methods in the prediction of bead geometry for GMA welding process and to develop an intelligent system that enables the prediction of bead geometry using Rapid Prototyping(RP) in order to employ the robotic GMA welding processes. This system developed using MATLAB/SIMULINK, could be effectively implemented not only for estimating bead geometry, but also employed to monitor and control the bead geometry in real time.

  • PDF

Global van Hiele (GVH) Questionnaire as a Tool for Mapping Knowledge and Understanding of Plane and Solid Geometry

  • Patkin, Dorit
    • Research in Mathematical Education
    • /
    • v.18 no.2
    • /
    • pp.103-128
    • /
    • 2014
  • This paper presents the Global van Hiele (GVH) questionnaire as a tool for mapping knowledge and understanding of plane and solid geometry. The questionnaire facilitates identification of the respondents' mastery of the first three levels of thinking according to van Hiele theory with regard to key geometrical topics. Teacher-educators can apply this questionnaire for checking preliminary knowledge of mathematics teaching candidates or pre-service teachers. Moreover, it can be used when planning a course or granting exemption from studying in basic geometry courses. The questionnaire can also serve high school mathematics teachers who are interested in exposing their students to multiple-choice questions in geometry.

The Design of Array Geometry in 2-D Multiple Baseline Direction Finding (2차원 멀티베이스라인 방향탐지 배열 구조 설계)

  • Park, Cheol-Sun;Kim, Dae-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10A
    • /
    • pp.988-995
    • /
    • 2006
  • In this Paper, we Present a nonharmonic may geometry design method using Euclidan minimum distance function in difference Phase spaces for 2-D (azimuth/elevation) multiple baseline antenna may which has a way to reduce the number of sensor antennas while maintaining accurate DOA estimate. The major advantages of our approach is that even the shortest interelement spacing can be larger than half-wavelength and is not limit13d to linear and it can be applied successfully to any array configuration. In multiple signals impinging situation, the performance simulation results of superresolution algorithms shows the effectiveness of the proposed method. Also the 2-D asymmetric may using the Proposed method is designed and the Performance of the manufactured away through the experimental test is verified.