• Title/Summary/Keyword: multiple genome sequences

Search Result 64, Processing Time 0.023 seconds

Multiple Forms of Serine-type Carboxypeptidase Produced by Absidia zychae (Absidia zychae가 생산하는 Serine-type Carboxypeptidase의 다양성)

  • 이병로;안병용
    • KSBB Journal
    • /
    • v.8 no.4
    • /
    • pp.405-408
    • /
    • 1993
  • Absidia zychae NRIC 1199 produced two forms of carboxypeptidase(CPZ-1 and CPZ-2) which were distinguished in their isoelectric points but had almost identical properties(1). The amino acid sequences for the N-terminal of both enzymes were the same (Tyr-Thr-Ser-Pro-Lys-Leu-Xaa-Asp-Pro-Asp-Val) and any significant difference was not observed between amino acid compositions of the two enzymes. The ouchterlony double diffusion technique using antibody raised against the CPZ-2 protein demonstrated a good cross-reaction between CPZ-1 and CPZ-2 Genomic Southern analysis showed only one gene encoding CPZ in the genome of Absidia zychae. However, a significant difference between two enzymes was observed on peptide map using Staphylococcus aureus V8 protease, distinguishable only one band, indicating that multiple forms of CPZ are caused by post-translational modification, such as deamidation.

  • PDF

A Simple and Fast Web Alignment Tool for Large Amount of Sequence Data

  • Lee, Yong-Seok;Oh, Jeong-Su
    • Genomics & Informatics
    • /
    • v.6 no.3
    • /
    • pp.157-159
    • /
    • 2008
  • Multiple sequence alignment (MSA) is the most important step for many of biological sequence analyses, homology search, and protein structural assignments. However, large amount of data make biologists difficult to perform MSA analyses and it requires much computational time to align many sequences. Here, we have developed a simple and fast web alignment tool for aligning, editing, and visualizing large amount of sequence data. We used a cluster server installed ClustalW-MPI using web services and message passing interface (MPI). It also enables users to edit multiple sequence alignments for manual editing and to download the input data and results such as alignments and phylogenetic tree.

Genetic Diversity of mtDNA D-loop and Maternal Origin of Three Chinese Native Horse Breeds

  • Zhang, Tao;Lu, Hongzhao;Chen, Chen;Jiang, Hai;Wu, Sanqiao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.7
    • /
    • pp.921-926
    • /
    • 2012
  • In order to protect the genetic resource of native horse breeds, the genetic diversity of mitochondrial DNA (mtDNA) D-loop of three native horse breeds in western China were investigated. Forty-three 600 bp mtDNA D-loop sequences were analyzed by PCR and sequencing techniques, 33 unique haplotypes with 70 polymorphic sites were detected in these horses, which account for 11.67% of 600 bp sequence analyzed, showing the abundant genetic diversity of the three native horse breeds in western China. The Neighbour-Joining (NJ) phylogenetic tree based on 247 bp of 43 D-loop sequences demonstrated the presence of seven major lineages (A to G), indicating that the three native horse breeds in western China originated from multiple maternal origins. Consistent with the front, the NJ phylogenetic tree based on 600 bp of mtDNA D-loop sequences of 43 Chinese western native horses and 81 sequences of six horse breeds from GenBank indicated that the three horse breeds had distributed into the seven major lineages (A to G). The structure of the phylogenic tree is often blurred because the variation in a short segment of the mitochondrial genome is often accompanied by high levels of recurrent mutations. Consequently, longer D-loop sequences are helpful in achieving a higher level of molecular resolution in horses.

Human endogenous retroviruses and neurologic disorders (인간 내인성 레트로 바이러스와 신경학적 장애)

  • Hwang, Moon-Hyon;Sim, Young-Je
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.6
    • /
    • pp.275-281
    • /
    • 2017
  • Human endogenous retroviruses (HERVs) are fossil viruses that began to be assimilated into the human genome some 30~40 million years ago, and now constitute nearly 8% of the human genome. These ancient retroviruses have since accumulated mutations that have rendered them defective; thus, they have been termed junk DNA. However, recent research indicates that not all HERVs remain silent passengers. Although they have not been shown to be causative of any human disease, endogenous retroviral sequences may become expressed under select pathological circumstances such as neurological disorders, including multiple sclerosis (MS), schizophrenia, and Amyotrophic Lateral Sclerosis (ALS); viral infections, including human immunodeficiency virus (HIV) and herpesvirus; and multiple types of cancers. This review focused on the possible interactions of HERVs and neurological diseases.

RNA-RNA Interactions between RNA Elements at the 5' end and at the Upstream of sgRNA of RNA Genome are Required for Potato virus X RNA Replication

  • Park, Mi-Ri;Park, Sang-Ho;Cho, Sang-Yun;Hemenway, Cynthia L.;Choi, Hong-Soo;Sohn, Seong-Han;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.24 no.3
    • /
    • pp.289-295
    • /
    • 2008
  • RNA-RNA interactions and the dynamic RNA conformations are important regulators in virus replication in several RNA virus systems and may also involved in the regulation of many important virus life cycle phases, including translation, replication, assembly, and switches in these important stages. The 5' non-translated region of Potato virus X(PVX) contains multiple cis-acting elements that facilitate various viral processes. It has previously been proposed that RNA-RNA interactions between various RNA elements present in PVX RNA genome are required for PVX RNA accumulation(Hu et al., 2007; Kim and Hemenway, 1999). This model was based on the potential base-pairing between conserved sequence elements at the upstream of subgenomic RNAs(sgRNAs) and at the 5' and 3' end of RNA genome. We now provide more evidence that RNA-RNA base-pairing between elements present at the 5' end and upstream of each sgRNA is required for efficient replication of genomic and subgenomic plus-strand RNA accumulation. Site-directed mutations introduced at the 5' end of plus-strand RNA replication defective mutant(${\Delta}12$) increasing base-pairing possibility with conserved sequence elements located upstream of each sgRNAs restored genomic and subgenomic plus-strand RNA accumulation and caused symptom development in inoculated Nicotiana benthamiana plants. Serial passage of a deletion mutant(${\Delta}8$) caused more severe symptoms and restored wild type sequences and thus retained possible RNA-RNA base-pairing. Altogether, these results indicate that the RNA element located at the 5' end of PVX genome involved in RNA-RNA interactions and play a key role in high-level accumulation of plus-strand RNA in vivo.

Gene Expression Analysis and Polymorphism Discovery to Investigate Drought Responsive System in Tropical Maize

  • Song, Kitae;Kim, Hyo Chul;Kim, Kyung-Hee;Moon, Jun-Cheol;Kim, Jae Yoon;Lee, Sang-Kyu;Lee, Byung-Moo
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.354-362
    • /
    • 2018
  • Maize has high food and industrial value, whereas has difficulties in research because of their complex and huge size genome. Nested association mapping (NAM) was constructed to better understand maize genetics. However, most studies were conducted using the reference genome B73, and only a few studies were conducted on tropical maize. Ki3, one of the founder lines of the NAM population, is a tropical maize. We analyzed the genetic characteristics of Ki3 by using RNA sequencing and bioinformatics tools for various genetic studies. As results, a total of 30,526 genes were expressed, and expression profile were constructed. A total of 1,558 genes were differentially expressed in response to drought stress, and 513 contigs of them come from de novo assemblies. In addition, high-density polymorphisms including 464,930 single nucleotide polymorphisms (SNPs), 21,872 multiple nucleotide polymorphisms (MNPs) and 93,313 insertions and deletions (InDels) were found compared to reference genome. Among them, 15.0 % of polymorphisms (87,838) were passed non-synonymous test which could alter amino acid sequences. The variants have 66,550 SNPs, 5,853 MNPs, and 14,801 InDels, also proportion of homozygous type was higher than heterozygous. These variants were found in a total of 15,643 genes. Of these genes, 637 genes were found as differentially expressed genes (DEGs) under drought stress. Our results provide a genome-wide analysis of differentially expressed genes and information of variants on expressed genes of tropical maize under drought stress. Further characterization of these changes in genetic regulation and genetic traits will be of great value for improvement of maize genetics.

Identification of Two Novel Amalgaviruses in the Common Eelgrass (Zostera marina) and in Silico Analysis of the Amalgavirus +1 Programmed Ribosomal Frameshifting Sites

  • Park, Dongbin;Goh, Chul Jun;Kim, Hyein;Hahn, Yoonsoo
    • The Plant Pathology Journal
    • /
    • v.34 no.2
    • /
    • pp.150-156
    • /
    • 2018
  • The genome sequences of two novel monopartite RNA viruses were identified in a common eelgrass (Zostera marina) transcriptome dataset. Sequence comparison and phylogenetic analyses revealed that these two novel viruses belong to the genus Amalgavirus in the family Amalgaviridae. They were named Zostera marina amalgavirus 1 (ZmAV1) and Zostera marina amalgavirus 2 (ZmAV2). Genomes of both ZmAV1 and ZmAV2 contain two overlapping open reading frames (ORFs). ORF1 encodes a putative replication factory matrix-like protein, while ORF2 encodes a RNA-dependent RNA polymerase (RdRp) domain. The fusion protein (ORF1+2) of ORF1 and ORF2, which mediates RNA replication, was produced using the +1 programmed ribosomal frameshifting (PRF) mechanism. The +1 PRF motif sequence, UUU_CGN, which is highly conserved among known amalgaviruses, was also found in ZmAV1 and ZmAV2. Multiple sequence alignment of the ORF1+2 fusion proteins from 24 amalgaviruses revealed that +1 PRF occurred only at three different positions within the 13-amino acid-long segment, which was surrounded by highly conserved regions on both sides. This suggested that the +1 PRF may be constrained by the structure of fusion proteins. Genome sequences of ZmAV1 and ZmAV2, which are the first viruses to be identified in common eelgrass, will serve as useful resources for studying evolution and diversity of amalgaviruses.

Genome Analysis of Naphthalene-Degrading Pseudomonas sp. AS1 Harboring the Megaplasmid pAS1

  • Kim, Jisun;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.330-337
    • /
    • 2018
  • Polycyclic aromatic hydrocarbons (PAHs), including naphthalene, are widely distributed in nature. Naphthalene has been regarded as a model PAH compound for investigating the mechanisms of bacterial PAH biodegradation. Pseudomonas sp. AS1 isolated from an arseniccontaminated site is capable of growing on various aromatic compounds such as naphthalene, salicylate, and catechol, but not on gentisate. The genome of strain AS1 consists of a 6,126,864 bp circular chromosome and the 81,841 bp circular plasmid pAS1. Pseudomonas sp. AS1 has multiple dioxygenases and related enzymes involved in the degradation of aromatic compounds, which might contribute to the metabolic versatility of this isolate. The pAS1 plasmid exhibits extremely high similarity in size and sequences to the well-known naphthalene-degrading plasmid pDTG1 in Pseudomonas putida strain NCIB 9816-4. Two gene clusters involved in the naphthalene degradation pathway were identified on pAS1. The expression of several nah genes on the plasmid was upregulated by more than 2-fold when naphthalene was used as a sole carbon source. Strains have been isolated at different times and places with different characteristics, but similar genes involved in the degradation of aromatic compounds have been identified on their plasmids, which suggests that the transmissibility of the plasmids might play an important role in the adaptation of the microorganisms to mineralize the compounds.

Prevalence of negative frequency-dependent selection, revealed by incomplete selective sweeps in African populations of Drosophila melanogaster

  • Kim, Yuseob
    • BMB Reports
    • /
    • v.51 no.1
    • /
    • pp.1-2
    • /
    • 2018
  • Positive selection on a new beneficial mutation generates a characteristic pattern of DNA sequence polymorphism when it reaches an intermediate allele frequency. On genome sequences of African Drosophila melanogaster, we detected such signatures of selection at 37 candidate loci and identified "sweeping haplotypes (SHs)" that are increasing or have increased rapidly in frequency due to hitchhiking. Based on geographic distribution of SH frequencies, we could infer whether selective sweeps occurred starting from de novo beneficial mutants under simple constant selective pressure. Single SHs were identified at more than half of loci. However, at many other loci, we observed multiple independent SHs, implying soft selective sweeps due to a high beneficial mutation rate or parallel evolution across space. Interestingly, SH frequencies were intermediate across multiple populations at about a quarter of the loci despite relatively low migration rates inferred between African populations. This invokes a certain form of frequency-dependent selection such as heterozygote advantage. At one locus, we observed a complex pattern of multiple independent that was compatible with recurrent frequency-dependent positive selection on new variants. In conclusion, genomic patterns of positive selection are very diverse, with equal contributions of hard and soft sweeps and a surprisingly large proportion of frequency-dependent selection in D. melanogaster populations.

Structural Analysis of Recombinant Human Preproinsulins by Structure Prediction, Molecular Dynamics, and Protein-Protein Docking

  • Jung, Sung Hun;Kim, Chang-Kyu;Lee, Gunhee;Yoon, Jonghwan;Lee, Minho
    • Genomics & Informatics
    • /
    • v.15 no.4
    • /
    • pp.142-146
    • /
    • 2017
  • More effective production of human insulin is important, because insulin is the main medication that is used to treat multiple types of diabetes and because many people are suffering from diabetes. The current system of insulin production is based on recombinant DNA technology, and the expression vector is composed of a preproinsulin sequence that is a fused form of an artificial leader peptide and the native proinsulin. It has been reported that the sequence of the leader peptide affects the production of insulin. To analyze how the leader peptide affects the maturation of insulin structurally, we adapted several in silico simulations using 13 artificial proinsulin sequences. Three-dimensional structures of models were predicted and compared. Although their sequences had few differences, the predicted structures were somewhat different. The structures were refined by molecular dynamics simulation, and the energy of each model was estimated. Then, protein-protein docking between the models and trypsin was carried out to compare how efficiently the protease could access the cleavage sites of the proinsulin models. The results showed some concordance with experimental results that have been reported; so, we expect our analysis will be used to predict the optimized sequence of artificial proinsulin for more effective production.