• 제목/요약/키워드: multiple genes

Search Result 590, Processing Time 0.032 seconds

The Impact of Calcium Depletion on Proliferation of Chlorella sorokiniana Strain DSCG150

  • Soontae Kang;Seungchan Cho;Danhee Jeong;Urim Kim;Jeongsug Kim;Sangmuk Lee;Yuchul Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.7
    • /
    • pp.1425-1432
    • /
    • 2024
  • This study analyzed the effects of Ca2+ metal ions among culture medium components on the Chlorella sorokiniana strain DSCG150 strain cell growth. The C. sorokiniana strain DSCG150 grew based on a multiple fission cell cycle and growth became stagnant in the absence of metal ions in the medium, particularly Ca2+. Flow cytometry and confocal microscopic image analysis results showed that in the absence of Ca2+, cell growth became stagnant as the cells accumulated into four autospores and could not transform into daughter cells. Genetic analysis showed that the absence of Ca2+ caused upregulation of calmodulin (calA) and cell division control protein 2 (CDC2_1) genes, and downregulation of origin of replication complex subunit 6 (ORC6) and dual specificity protein phosphatase CDC14A (CDC14A) genes. Analysis of gene expression patterns by qRT-PCR showed that the absence of Ca2+ did not affect cell cycle progression up to 4n autospore, but it inhibited Chlorella cell fission (liberation of autospores). The addition of Ca2+ to cells cultivated in the absence of Ca2+ resulted in an increase in n cell population, leading to the resumption of C. sorokiniana growth. These findings suggest that Ca2+ plays a crucial role in the fission process in Chlorella.

Cloning and Intraspecific Variation of β-Actin 2 Gene from the Hermaphroditic Fish Rivulus marmoratus (Cyprinodontiformes, Rivulidae) (암수동체 어류 점박이송사리 Rivulus marmoratus (Cyprinodontiformes, Rivulidae) β-Actin 2 유전자의 클로닝 및 종내 변이)

  • Jung, Sang-Oun;Lee, Young-Mi;Lee, Chang Joo;Lee, Jae-Seong
    • Korean Journal of Ichthyology
    • /
    • v.17 no.1
    • /
    • pp.49-56
    • /
    • 2005
  • The full sequence analysis of 16 different $\beta-actin$ genes isolated from a single Rivulus marmoratus was performed. The numbers of isolated $\beta-actin$ genes varied from 1764 to 1769. They showed different amino acid residues at the exon 1 region. We named this new gene R. marmoratus $\beta-actin$ 2 gene. Intraspecific variation of R. marmoratus $\beta-actin$ 2 gene was also examined. Major differences of 16 isolated $\beta-actin$ genes, compared to already reported R. marmoratus $\beta-actin$ gene (GenBank AF168615), were observed in both deduced amino acid sequences (1~2%) and intron 2 sequences (4~5%). In this paper, we confirmed the intraspecific variation of $\beta-actin$ gene in this species.

Nature of Gene Action for Duration of Grain filling in Crosses of Winter and Spring Wheats(Triticum aestivum L. em Thell) (춘.추 파성 소맥품종간 교잡에서 등숙기간을 지배하는 유전자 작용에 관한 연구)

  • Byung Han, Choi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.2
    • /
    • pp.131-139
    • /
    • 1985
  • Breeders have concerned with the nature of gene action controlling the duration of grain filling period to combine early maturity and acceptable grain yield to fit wheat into multiple cropping systems. The 4 x 4 complete diallel set of F$_1$, F$_2$ and 1/2 (BC$_1$ + BC$_2$) in crosses of winter and spring wheat cultivars was made to determine the nature of gene action involved for duration of grain filling period. Using the Jinks-Hayman model, no maternal effects were noted nor were any non-allelic interactions observed for total duration of grain filling and lag period. The actual grain filling period was influenced to some degree by such interactions. The spring cultivars Red Bobs and Siete Cerros also appeared to have more dominant genes for longer total duration of grain filling and lag period. In contrast, the winter parents Yamhill and Hyslop had more dominant genes for the longer actual grain filling period. The genes appeared to be independently distributed among the parents.

  • PDF

Gene Expression Analysis of Rat Liver Epithelial Cells in Response to Thioacetamide

  • Park, Joon-Suk;Yeom, Hye-Jung;Jung, Jin-Wook;Hwang, Seung-Yong;Lee, Yong-Soon;Kang, Kyung-Sun
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.3
    • /
    • pp.203-208
    • /
    • 2005
  • Thioacetamide (TA) is potent haptotoxincant that requires metabolic activation by mixed-function oxidases. Micrcarray technology, which is massive parallel gene expression profiling in a single hybridization experiment, has provided as a powerful molecular genetic tool for biological system related toxicant. In this study we focus on the use of toxicogenomics for the determination of gene expression analysis associated with hepatotoxicity in rat liver epithelial cell line WB-F344 (WB). The WB cells was used to assess the toxic effects of TA. WB cells were exposed to two concentrations of TA-doses which caused 20% and 50% cell death were chosen and the cells exposed for periods of 2 and 24 h. Our data revealed that following the 2-h exposure at the both of doses and 24-h exposure at the low doses, few changes in gene expression were detected. However, after 24-h exposure of the cells to the high concentration, multiple changes in gene expression were observed. TA treatment gave rise predominantly to up-regulation of genes involved in cell cycle and cell death, but down-regulation of genes involves in cell adhesion and calcium ion binding. Exposure of WB cells to higher doses of the TA gave rise to more changes in gene expression at lower exposure times. These results show that TA regulates expression of numerous genes via direct molecular signaling mechanisms in liver cells.

Isolation and Characterization of Pathogen-Inducible Putative Zinc Finger DNA Binding Protein from Hot Pepper Capsicum annuum L.

  • Oh, Sang-Keun;Park, Jeong-Mee;Jung, Young-Hee;Lee, Sanghyeob;Kim, Soo-Yong;Eunsook Chung;Yi, So-Young;Kim, Young-Cheol;Seung, Eun-Soo
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.79.2-80
    • /
    • 2003
  • To better understand plant defense responses against pathogen attack, we identified the transcription factor-encoding genes in the hot pepper Capsicum annuum that show altered expression patterns during the hypersensitive response raised by challenge with bacterial pathogens. One of these genes, Ca1244, was characterized further. This gene encodes a plant-specific Type IIIA - zinc finger protein that contains two Cys$_2$His$_2$zinc fingers. Ca1244 expression is rapidly and specifically induced when pepper plants are challenged with bacterial pathogens to which they are resistant. In contrast, challenge with a pathogen to which the plants are susceptible only generates weak Ca1244 expression. Ca1244 expression is also strongly induced in pepper leaves by the exogenous application of ethephon, an ethylene releasing compound. Whereas, salicylic acid and methyl jasmonate had moderate effects. Pepper protoplasts expressing a Ca1244-smGFP fusion protein showed Ca1244 localizes in the nucleus. Transgenic tobacco plants overexpressing Ca1244 driven by the CaMV 355 promoter show increased resistance to challenge with a tobacco-specific bacterial pathogen. These plants also showed constitutive upregulation of the expression of multiple defense-related genes. These observations provide the first evidence that an Type IIIA - zinc finger protein, Ca1244, plays a crucial role in the activation of the pathogen defense response in plants.

  • PDF

Differential Expression of $PKD2$-Associated Genes in Autosomal Dominant Polycystic Kidney Disease

  • Yook, Yeon-Joo;Woo, Yu-Mi;Yang, Moon-Hee;Ko, Je-Yeong;Kim, Bo-Hye;Lee, Eun-Ji;Chang, Eun-Sun;Lee, Min-Joo;Lee, Sun-Young;Park, Jong-Hoon
    • Genomics & Informatics
    • /
    • v.10 no.1
    • /
    • pp.16-22
    • /
    • 2012
  • Autosomal dominant polycystic kidney disease (ADPKD) is characterized by formation of multiple fluid-filled cysts that expand over time and destroy renal architecture. The proteins encoded by the $PKD1$ and $PKD2$ genes, mutations in which account for nearly all cases of ADPKD, may help guard against cystogenesis. Previously developed mouse models of $PKD1$ and $PKD2$ demonstrated an embryonic lethal phenotype and massive cyst formation in the kidney, indicating that $PKD1$ and $PKD2$ probably play important roles during normal renal tubular development. However, their precise role in development and the cellular mechanisms of cyst formation induced by $PKD1$ and $PKD2$ mutations are not fully understood. To address this question, we presently created $Pkd2$ knockout and $PKD2$ transgenic mouse embryo fibroblasts. We used a mouse oligonucleotide microarray to identify messenger RNAs whose expression was altered by the overexpression of the $PKD2$ or knockout of the $Pkd2$. The majority of identified mutations was involved in critical biological processes, such as metabolism, transcription, cell adhesion, cell cycle, and signal transduction. Herein, we confirmed differential expressions of several genes including aquaporin-1, according to different $PKD2$ expression levels in ADPKD mouse models, through microarray analysis. These data may be helpful in $PKD2$-related mechanisms of ADPKD pathogenesis.

Characterization of Bacillus thuringiensis Having Insecticidal Effects Against Larvae of Musca domestica

  • Oh, Se-Teak;Kim, Jin-Kyu;Yang, Si-Yong;Song, Min-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.1057-1062
    • /
    • 2004
  • The entomopathogenic bacterium Bacillus thuringiensis is the most widely used biopesticide. Insecticidal proteins, coded by genes located in plasmids, form typical parasporal, crystalline inclusions during sporulation. We isolated a Bacillus thuringiensis strain having insecticidal activity against larvae of the house fly (M. domestica) from the soils at a pig farm in Korea, and named it Bacillus thuringiensis SM. The culture filtrate from Bacillus thuringiensis SM showed strong lethality (83.3%) against M. domestica larvae. The parasporal crystal is enclosed within the spores' outermost envelope, as determined by transmission electron microscopy, and exhibited a bipyramidal form. The crystal proteins of strain SM consisted of five proteins with molecular weights of approximately ~130, ~80, ~68, ~42, and ~27 kDa on a 10% SDS-PAGE (major band, a size characteristic of Cry protein). Examination of antibiotic resistance revealed that the strain SM showed multiple resistant. The strain SM had at least three different plasmids with sizes of 6.6, 9.3, and 54 kb. Polymerase chain reactions (PCRs) revealed the presence of cry1, cry4A2, and cry11A1 genes in the strain SM. The cry1 gene profile of the strain SM appeared in the three respective products of 487 bp [cry1A(c)], 414 bp [cry1D], and 238 bp [cry1A(b)]. However, the strain SM has not shown the cry4A2 md cry11A1 genes. In in vivo toxicity assays, the strain SM showed high toxicity on fly larvae (M. domestic) [with $LC_{50}$ of 4.2 mg/ml, $LC_{90}$ of 8.2 mg/ml].

A novel MLL2 gene mutation in a Korean patient with Kabuki syndrome

  • Kim, Soo Jin;Cho, Sung Yoon;Maeng, Se Hyun;Sohn, Young Bae;Kim, Su-Jin;Ki, Chang-Seok;Jin, Dong-Kyu
    • Clinical and Experimental Pediatrics
    • /
    • v.56 no.8
    • /
    • pp.355-358
    • /
    • 2013
  • Kabuki syndrome (KS) is a rare genetic disease with a distinctive dysmorphic face, intellectual disability, and multiple congenital abnormalities. KS is inherited in an autosomal dominant manner. As the primary cause of KS, MLL2 mutations have been identified in 56-76% of affected individuals who have been tested, suggesting that there may be additional genes associated with KS. Recently, a few KS individuals have been found to have de novo partial or complete deletions of an X chromosome gene, KDM6A, which encodes a histone demethylase that interacts with MLL2. Nevertheless, mutations in MLL2 are the major cause of KS. Although there are a few reports of KS patients in Korea, none of these had been confirmed by genetic analysis. Here, we report a case of a Korean patient with clinical features of KS. Using direct sequencing, we identified a frameshift heterozygous mutation for MLL2 : (c.5256_5257delGA;p.Lys1753Alafs$^*34$). Clinically, the patient presented with typical facial features, and diagnosis of KS was based on the diagnostic criteria. While KS is a rare disease, other malformations that overlap with those found in individuals with KS are common. Hence, the diagnosis of KS by mutational analysis can be a valuable method for patients with KS-like syndromes. Furthermore, in the near future, other genes could be identified in patients with KS without a detectable MLL2 mutation.

Improvement of a Sulfolobus-E. coli Shuttle Vector for Heterologous Gene Expression in Sulfolobus acidocaldarius

  • Hwang, Sungmin;Choi, Kyoung-Hwa;Yoon, Naeun;Cha, Jaeho
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.196-205
    • /
    • 2015
  • A Sulfolobus-E. coli shuttle vector for an efficient expression of the target gene in S. acidocaldarius strain was constructed. The plasmid-based vector pSM21 and its derivative pSM21N were generated based on the pUC18 and Sulfolobus cryptic plasmid pRN1. They carried the S. solfataricus P2 pyrEF gene for the selection marker, a multiple cloning site (MCS) with C-terminal histidine tag, and a constitutive promoter of the S. acidocaldarius gdhA gene for strong expression of the target gene, as well as the pBR322 origin and ampicillin-resistant gene for E. coli propagation. The advantage of pSM21 over other Sulfolobus shuttle vectors is that it contains a MCS and a histidine tag for the simple and easy cloning of a target gene as well as one-step purification by histidine affinity chromatography. For successful expression of the foreign genes, two genes from archaeal origins (PH0193 and Ta0298) were cloned into pSM21N and the functional expression was examined by enzyme activity assay. The recombinant PH0193 was successfully expressed under the control of the gdhA promoter and purified from the cultures by His-tag affinity chromatography. The yield was approximately 1 mg of protein per liter of cultures. The enzyme activity measurements of PH0913 and Ta0298 revealed that both proteins were expressed as an active form in S. acidocaldarius. These results indicate that the pSM21N shuttle vector can be used for the functional expression of foreign archaeal genes that form insoluble aggregates in the E. coli system.

Studies on the Effects of Deleterious Genes on the Strains Selected for Photoaxis in Drosophila melanogaster (초파리에 있어서 주광성행동의 선발에 관한 유해유전자의 영향)

  • Jong-Kil Choo
    • The Korean Journal of Zoology
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 1975
  • The experiment has been analyzed for genetic architecture of behavioral trait in strains selected for positive and negative phototaxis in Drosophila melanogaster. Response to selection for two different directions was rapidly diverged in their phototactic scores. Realized heritabilities for the first teh generations of selection in the positive and negative strains calculated to be 3.08% and 2.86%, respectively in both sexes. The frequency of deleterious chromosomes(lethal and semilethal chromosomes) in the positively selected strain(43%) was higher than that of negatively selected one (18%). The unselected strain(27%) was intermediate frequency between both selected strains. The correlated relationship between deleterious genes and photopositive polygenes was confirmed by the phototactic behavior of the lethal heterozygotes($1_i/1_j$). Form the results, the deleterious genes induced by long term selection for phototaxis would be considered some linkage relationship with photopositive polygenes.

  • PDF