• Title/Summary/Keyword: multiple fuzzy systems

Search Result 254, Processing Time 0.029 seconds

Vibration diagnosis for a rotating machinery using multiple sensors (다중 센서를 이용한 회전 기계의 진동 진단에 관한 연구)

  • 김기환;박영준;김재훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.852-855
    • /
    • 1997
  • In this paper, the vibration diagnosis system of a rotating machinery is introduced, in which the vibration signals of multiple accelerometers and displacement sensors are used combinedly as input parameters and their characteristics of the vibration response and mutual relationships between each sensor signal are considered to improve the reliability of the diagnosis system. The fuzzy logic is utilized for inferencing the fault from the vibration signal patterns.

  • PDF

A Multi-Resolution Radial Basis Function Network for Self-Organization, Defuzzification, and Inference in Fuzzy Rule-Based Systems

  • Lee, Suk-Han
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10a
    • /
    • pp.124-140
    • /
    • 1995
  • The merit of fuzzy rule based systems stems from their capability of encoding qualitative knowledge of experts into quantitative rules. Recent advancement in automatic tuning or self-organization of fuzzy rules from experimental data further enhances their power, allowing the integration of the top-down encoding of knowledge with the bottom-up learning of rules. In this paper, methods of self-organizing fuzzy rules and of performing defuzzification and inference is presented based on a multi-resolution radial basis function network. The network learns an arbitrary input-output mapping from sample distribution as the union of hyper-ellipsoidal clusters of various locations, sizes and shapes. The hyper-ellipsoidal clusters, representing fuzzy rules, are self-organized based of global competition in such a way as to ensute uniform mapping errors. The cooperative interpolation among the multiple clusters associated with a mapping allows the network to perform a bidirectional many-to-many mapping, representing a particular from of defuzzification. Finally, an inference engine is constructed for the network to search for an optimal chain of rules or situation transitions under the constraint of transition feasibilities imposed by the learned mapping. Applications of the proposed network to skill acquisition are shown.

  • PDF

Neuro-fuzzy based prediction of the durability of self-consolidating concrete to various sodium sulfate exposure regimes

  • Bassuoni, M.T.;Nehdi, M.L.
    • Computers and Concrete
    • /
    • v.5 no.6
    • /
    • pp.573-597
    • /
    • 2008
  • Among artificial intelligence-based computational techniques, adaptive neuro-fuzzy inference systems (ANFIS) are particularly suitable for modelling complex systems with known input-output data sets. Such systems can be efficient in modelling non-linear, complex and ambiguous behaviour of cement-based materials undergoing single, dual or multiple damage factors of different forms (chemical, physical and structural). Due to the well-known complexity of sulfate attack on cement-based materials, the current work investigates the use of ANFIS to model the behaviour of a wide range of self-consolidating concrete (SCC) mixture designs under various high-concentration sodium sulfate exposure regimes including full immersion, wetting-drying, partial immersion, freezing-thawing, and cyclic cold-hot conditions with or without sustained flexural loading. Three ANFIS models have been developed to predict the expansion, reduction in elastic dynamic modulus, and starting time of failure of the tested SCC specimens under the various high-concentration sodium sulfate exposure regimes. A fuzzy inference system was also developed to predict the level of aggression of environmental conditions associated with very severe sodium sulfate attack based on temperature, relative humidity and degree of wetting-drying. The results show that predictions of the ANFIS and fuzzy inference systems were rational and accurate, with errors not exceeding 5%. Sensitivity analyses showed that the trends of results given by the models had good agreement with actual experimental results and with thermal, mineralogical and micro-analytical studies.

Self-Organizing Fuzzy Modeling Using Creation of Clusters (클러스터 생성을 이용한 자기구성 퍼지 모델링)

  • Koh, Taek-Beom
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.334-340
    • /
    • 2002
  • This paper proposes a self-organizing fuzzy modeling which can create a new hyperplane-shaped cluster by applying multiple regression to input/output data with relatively large fuzzy entropy, add the new cluster to fuzzy rule base and adjust parameters of the fuzzy model in repetition. Tn the coarse tuning, weighted recursive least squared algorithm and fuzzy C-regression model clustering are used and in the fine tuning, gradient descent algorithm is used to adjust parameters of the fuzzy model precisely And learning rates are optimized by utilizing meiosis-genetic algorithm. To check the effectiveness and feasibility of the suggested algorithm, four representative examples for system identification are examined and the performance of the identified fuzzy model is demonstrated in comparison with that of the conventional fuzzy models.

Building a Fuzzy Model with Transparent Membership Functions through Constrained Evolutionary Optimization

  • Kim, Min-Soeng;Kim, Chang-Hyun;Lee, Ju-Jang
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.298-309
    • /
    • 2004
  • In this paper, a new evolutionary scheme to design a TSK fuzzy model from relevant data is proposed. The identification of the antecedent rule parameters is performed via the evolutionary algorithm with the unique fitness function and the various evolutionary operators, while the identification of the consequent parameters is done using the least square method. The occurrence of the multiple overlapping membership functions, which is a typical feature of unconstrained optimization, is resolved with the help of the proposed fitness function. The proposed algorithm can generate a fuzzy model with transparent membership functions. Through simulations on various problems, the proposed algorithm found a TSK fuzzy model with better accuracy than those found in previous works with transparent partition of input space.

A Fuzzy Based Solution for Allocation and Sizing of Multiple Active Power Filters

  • Moradifar, Amir;Soleymanpour, Hassan Rezai
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.830-841
    • /
    • 2012
  • Active power filters (APF) can be employed for harmonic compensation in power systems. In this paper, a fuzzy based method is proposed for identification of probable APF nodes of a radial distribution system. The modified adaptive particle swarm optimization (MAPSO) technique is used for final selection of the APFs size. A combination of Fuzzy-MAPSO method is implemented to determine the optimal allocation and size of APFs. New fuzzy membership functions are formulated where the harmonic current membership is an exponential function of the nodal injecting harmonic current. Harmonic voltage membership has been formulated as a function of the node harmonic voltage. The product operator shows better performance than the AND operator because all harmonics are considered in computing membership function. For evaluating the proposed method, it has been applied to the 5-bus and 18-bus test systems, respectively, which the results appear satisfactorily. The proposed membership functions are new at the APF placement problem so that weighting factors can be changed proportional to objective function.

A Current-mode Multiple-Input Minimum Circuit For Fuzzy Logic Controllers

  • Mettasitthikorn, Yot;Pojanasuwanchai, Chamaiporn;Riewruja, Vanchai;Jaruwanawat, Anuchit;Julsereewong, Prasit
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.69-72
    • /
    • 2003
  • This paper presents a current-mode multiple-input minimum circuit. The proposed circuit can be implemented by applying De Morgan’s law. The circuit diagram is simple and modular. It operates using a single 2.5V supply and has very low dissipation. The realization method is suitable for fabrication using CMOS technology and all transistors are operated in their saturation region. The performances of this proposed circuit were studied using the PSPICE analog simulation program. The simulation results show the approval of this circuit that it has adequate basic performances for a real-time fuzzy controller and a fuzzy computer.

  • PDF

Design of Discrete-Time TS Fuzzy-Model-Based Controller (이산 시간 TS퍼지 모델 기반 제어기 설계)

  • Lee, Ho-Jae;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2630-2632
    • /
    • 2000
  • In this paper, a control technique of Takagi-Sugeno (TS) fuzzy systems with parametric uncertainties is developed. The uncertain TS fuzzy system is represented as an uncertain multiple linear system. The control problem of TS fuzzy system is converted into the stabilization problem of a uncertain multiple linear system. A sufficient condition for robust stabilization is obtained in terms of linear matrix inequalities (LMI). A Design example is illustrated to show the effectiveness of the proposed method.

  • PDF

Uncertainty Fusion of Sensory Information Using Fuzzy Numbers

  • Park, Sangwook;Lee, C. S. George
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1001-1004
    • /
    • 1993
  • The Multisensor Fusion Problem (MFP) deals with the methodologies involved in effectively combining together homogeneous or non-homegeneous information obtained from multiple redundant or disparate sensors in order to perform a task more accurately, efficiently, and reliably. The inherent uncertainties in the sensory information are represented using Fuzzy Numbers, -numbers, and the Uncertainty-Reductive Fusion Technique (URFT) is introduced to combine the multiple sensory information into one consensus -number. The MFP is formulated from the Information Theory perspective where sensors are viewed as information sources with a fixed output alphabet and systems are modeled as a network of information processing and processing and propagating channels. The performance of the URFT is compared with other fusion techniques in solving the 3-Sensor Problem.

  • PDF

Fuzzy Modeling Technique of Nonlinear Dynamical System and Its Stability Analysis (비선형 시스템의 퍼지 모델링 기법과 안정도 해석)

  • So, Myeong Ok;Ryu, Gil Su;Lee, Jun Tak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.101-101
    • /
    • 1996
  • This paper presents the linearized fuzzy modeling technique of nonlinear dynamical system and the stability analysis of fuzzy control system. Firstly, the nonlinear system is partitionized by multiple linear fuzzy subcontrol systems based on fuzzy linguistic variables and fuzzy rules. Secondly, the disturbance adaptaion controllers which guarantee the global asymptotic stability of each fuzzy subsystem by an optimal feedback control law are designed and the stability analysis procedures of the total fuzzy control system using Lyapunov functions and eigenvalues are discussed in detail through a given illustrative example.