• 제목/요약/키워드: multiple fuzzy systems

검색결과 253건 처리시간 0.032초

퍼지 로직을 이용한 수중 로봇의 새로운 경로 제어 알고리즘 (A New Path Control Algorithm for Underwater Robots Using Fuzzy Logic)

  • 권경엽;정태휘;조중선
    • 한국지능시스템학회논문지
    • /
    • 제15권4호
    • /
    • pp.498-504
    • /
    • 2005
  • 본 논문에서는 퍼지 로직을 이용한 수중 로봇의 충돌 회피를 제안하였다. VFF(Virtual Force Field) 방법은 이동 로봇 분야에서 널리 사용하고 있는 충돌 회피 알고리즘이다. 본 논문에서는 이를 수중 로봇의 자율 항해를 위한 형태로 변형시킨 Modified Virtual Force Field(MVFF)를 제시하였다. 보다 정교한 알고리즘을 위해서 퍼지 로직을 이용한 MVFF를 구성하였고, 이를 수중 로봇의 경로 유지와 충돌 회피에 적용하였다 퍼지 로직은 수중 로봇의 자율 항해 동안 직면하게 되는 다양한 상황들을 다루었다. 제안한 충돌 회피 알고리즘은 다수개의 고정 장애물에 대해서 좋은 성능을 제시하였다. 시뮬레이션 결과를 통해 제안된 방법이 수중 로봇의 충돌 회피에 효과적으로 적용될 수 있음을 보였다.

비선형 계통의 뉴로-퍼지 동정과 이의 고장 진단 시스템에의 적용 (Neuro-Fuzzy Identification for Non-linear System and Its Application to Fault Diagnosis)

  • 김정수;송명현;이기상;김성호
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.447-452
    • /
    • 1998
  • A fault is considered as a variation of physical parameters; therefore the design of fault detection and identification(FDI) can be reduced to the parameter identification of a non linear system and to the association of the set of the estimated parameters with the mode of faults. ANFIS(Adaptive Neuro-Fuzzy Inference System) which contains multiple linear models as consequent part is used to model non linear systems. In this paper, we proposes an FDI system for non linear systems using ANFIS. The proposed diagnositc system consists of two ANFISs which operate in two different modes (parallel-and series-parallel mode). It generates the parameter residuals associated with each modes of faults which can be further processed by additional RBF (Radial Basis function) network to identify the faults. The proposed FDI scheme has been tested by simultation on a two-tank system

  • PDF

무선 매체 접근 제어 프로토콜 상에서의 음성/데이타 통합 시스템을 위한 뉴로 퍼지 제어기 설계 (Design of a NeuroFuzzy Controller for the Integrated System of Voice and Data Over Wireless Medium Access Control Protocol)

  • 최원석;김응주;김범수;임묘택
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.1990-1992
    • /
    • 2001
  • In this paper, a NeuroFuzzy controller (NFC) with enhanced packet reservation multiple access (PRMA) protocol for QoS-guaranteed multimedia communication systems is proposed. The enhanced PRMA protocol adopts mini-slot technique for reducing contention cost, and these minislot are futher partitioned into multiple MAC regions for access requests coming from users with their respective QoS (quality-of-service) requirements. And NFC is designed to properly determine the MAC regions and access probability for enhancing the PRMA efficiency under QoS constraint. It mainly contains voice traffic estimator including the slot information estimator with recurrent neural networks (RNNs) using real-time recurrent learning (RTRL), and fuzzy logic controller with Mandani- and Sugeno-type of fuzzy rules. Simulation results show that the enhanced PRMA protocol with NFC can guarantee QoS requirements for all traffic loads and further achieves higher system utilization and less non real-time packet delay, compared to previously studied PRMA, IPRMA, SIR, HAR, and F2RAC.

  • PDF

퍼지 멤버십 함수와 AHP 추론기법을 이용한 전자상거래 협상지원 (Fuzzy Membership Functions and AHP-Based Negotiation Support in Electronic Commerce)

  • 김진성
    • 한국지능시스템학회논문지
    • /
    • 제12권4호
    • /
    • pp.347-352
    • /
    • 2002
  • 본 연구에서는 동적인 전자상거래 협상을 지원하기 위한 퍼지 AHP 기반의 협상지원 메커니즘 (Fuzzy AHP-based Negotiation support: FAHP-NEGO)을 제안한다. 협상은 단독으로 의사결정을 할 수 없는 둘 이상의 구성원간에 합의점을 도출하는 과정을 의미한다. 따라서, 여기에는 구성원 사이의 합의점을 도출하는 것이 매우 중요하다. 본 연구에서는, 이를 지원하기 위한 전자상거래 협상지원 메커니즘의 이론적인 배경으로서, 퍼지멤버십 함수와 AHP 기법을 사용하였다. 본 연구에서 제안한 협상지원 메커니즘은 정성적인 변수와 정량적인 변수를 모두 포함하고 있으며, 다중 협상과정을 통하여 전자상거래 협상을 지원한다. 건강보조식품 구매과정에 전사상거래 협상지원 메커니즘을 적용한 결과, 본 연구에서 제안한 전자상거래 협상지원 메커니즘이 정성적인 변수와 정량적인 변수를 반영한 전자상거래 협상을 지원할 수 있음을 보여주었다 본 연구의 후반부에는 향후 연구과제로서 전자상거래 협상지원 모형과 시스템 구축에 대해서 언급하였다.

A Multi-Attribute Intuitionistic Fuzzy Group Decision Method For Network Selection In Heterogeneous Wireless Networks Using TOPSIS

  • Prakash, Sanjeev;Patel, R.B.;Jain, V.K.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권11호
    • /
    • pp.5229-5252
    • /
    • 2016
  • With proliferation of diverse network access technologies, users demands are also increasing and service providers are offering a Quality of Service (QoS) to satisfy their customers. In roaming, a mobile node (MN) traverses number of available networks in the heterogeneous wireless networks environment and a single operator is not capable to fulfill the demands of user. It is crucial task for MN for selecting a best network from the list of networks at any time anywhere. A MN undergoes a network selection situation frequently when it is becoming away from the home network. Multiple Attribute Group Decision (MAGD) method will be one of the best ways for selecting target network in heterogeneous wireless networks (4G). MAGD network selection process is predominantly dependent on two steps, i.e., attribute weight, decision maker's (DM's) weight and aggregation of opinion of DMs. This paper proposes Multi-Attribute Intuitionistic Fuzzy Group Decision Method (MAIFGDM) using TOPSIS for the selection of the suitable candidate network. It is scalable and is able to handle any number of networks with large set of attributes. This is a method of lower complexity and is useful for real time applications. It gives more accurate result because it uses Intuitionistic Fuzzy Sets (IFS) with an additional parameter intuitionistic fuzzy index or hesitant degree. MAIFGDM is simulated in MATLAB for its evaluation. A comparative study of MAIFDGM is also made with TOPSIS and Fuzzy-TOPSIS in respect to decision delay. It is observed that MAIFDGM have low values of decision time in comparison to TOPSIS and Fuzzy-TOPSIS methods.

Multiple Sliding Surface Control Approach to Twin Rotor MIMO Systems

  • Van, Quan Nguyen;Hyun, Chang-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권3호
    • /
    • pp.171-180
    • /
    • 2014
  • In this paper, a multiple sliding surface (MSS) controller for a twin rotor multi-input-multioutput system (TRMS) with mismatched model uncertainties is proposed. The nonlinear terms in the model are regarded as model uncertainties, which do not satisfy the standard matching condition, and an MSS control technique is adopted to overcome them. In order to control the position of the TRMS, the system dynamics are pseudo-decomposed into horizontal and vertical subsystems, and two MSSs are separately designed for each subsystem. The stability of the TRMS with the proposed controller is guaranteed by the Lyapunov stability theory. Some simulation results are given to verify the proposed scheme, and the real time performances of the TRMS with the MSS controller show the effectiveness of the proposed controller.

확장된 Fuzzy AHP를 이용한 효율적인 의사결정 (An efficient Decision-Making using the extended Fuzzy AHP Method(EFAM))

  • 류경현;피수영
    • 한국지능시스템학회논문지
    • /
    • 제19권6호
    • /
    • pp.828-833
    • /
    • 2009
  • 웹상에서 이용할 수 있는 방대한 문서의 집합인 WWW은 사용자를 위한 다양한 정보의 보고이다. 그러나 불필요한 정보의 필터링이나 사용자가 필요한 정보를 검색하는데 많은 시간이 소요되어 효율적인 의사결정을 하는데 어려움이 있다. 본 논문에서는 의사결정에 관한 요소를 계층화 구조로 나타내는 AHP나 Fuzzy AHP방법들을 데이터의 관점에서 대안, 평가기준, 주관적 속성가중치, 개념과 객체 사이에 퍼지 관계를 기반으로 웹 자원을 효과적으로 관리하고 의사결정을 할 수 있는 EFAM(Extended Fuzzy AHP Method) 모델을 제안하였다. 제안한 EFAM 모델은 웹상의 효율적인 문서검색과 특정 영역의 문제를 의사결정하기 위하여 영역의 코퍼스로부터 추출된 개념들이 가지는 의미론적 내용에 감성 기준을 고려함으로써 효율적으로 문서를 추출할 수 있어서 명확한 의사결정을 할 수가 있음을 실험을 통하여 확인한다.

강화된 유전알고리즘을 이용한 이중 동조 기반 퍼지 예측시스템 설계 및 응용 (Design of Fuzzy Prediction System based on Dual Tuning using Enhanced Genetic Algorithms)

  • 방영근;이철희
    • 전기학회논문지
    • /
    • 제59권1호
    • /
    • pp.184-191
    • /
    • 2010
  • Many researchers have been considering genetic algorithms to system optimization problems. Especially, real-coded genetic algorithms are very effective techniques because they are simpler in coding procedures than binary-coded genetic algorithms and can reduce extra works that increase the length of chromosome for wide search space. Thus, this paper presents a fuzzy system design technique to improve the performance of the fuzzy system. The proposed system consists of two procedures. The primary tuning procedure coarsely tunes fuzzy sets of the system using the k-means clustering algorithm of which the structure is very simple, and then the secondary tuning procedure finely tunes the fuzzy sets using enhanced real-coded genetic algorithms based on the primary procedure. In addition, this paper constructs multiple fuzzy systems using a data preprocessing procedure which is contrived for reflecting various characteristics of nonlinear data. Finally, the proposed fuzzy system is applied to the field of time series prediction and the effectiveness of the proposed techniques are verified by simulations of typical time series examples.

Hardware Approach to Fuzzy Inference―ASIC and RISC―

  • Watanabe, Hiroyuki
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.975-976
    • /
    • 1993
  • This talk presents the overview of the author's research and development activities on fuzzy inference hardware. We involved it with two distinct approaches. The first approach is to use application specific integrated circuits (ASIC) technology. The fuzzy inference method is directly implemented in silicon. The second approach, which is in its preliminary stage, is to use more conventional microprocessor architecture. Here, we use a quantitative technique used by designer of reduced instruction set computer (RISC) to modify an architecture of a microprocessor. In the ASIC approach, we implemented the most widely used fuzzy inference mechanism directly on silicon. The mechanism is beaded on a max-min compositional rule of inference, and Mandami's method of fuzzy implication. The two VLSI fuzzy inference chips are designed, fabricated, and fully tested. Both used a full-custom CMOS technology. The second and more claborate chip was designed at the University of North Carolina(U C) in cooperation with MCNC. Both VLSI chips had muliple datapaths for rule digital fuzzy inference chips had multiple datapaths for rule evaluation, and they executed multiple fuzzy if-then rules in parallel. The AT & T chip is the first digital fuzzy inference chip in the world. It ran with a 20 MHz clock cycle and achieved an approximately 80.000 Fuzzy Logical inferences Per Second (FLIPS). It stored and executed 16 fuzzy if-then rules. Since it was designed as a proof of concept prototype chip, it had minimal amount of peripheral logic for system integration. UNC/MCNC chip consists of 688,131 transistors of which 476,160 are used for RAM memory. It ran with a 10 MHz clock cycle. The chip has a 3-staged pipeline and initiates a computation of new inference every 64 cycle. This chip achieved an approximately 160,000 FLIPS. The new architecture have the following important improvements from the AT & T chip: Programmable rule set memory (RAM). On-chip fuzzification operation by a table lookup method. On-chip defuzzification operation by a centroid method. Reconfigurable architecture for processing two rule formats. RAM/datapath redundancy for higher yield It can store and execute 51 if-then rule of the following format: IF A and B and C and D Then Do E, and Then Do F. With this format, the chip takes four inputs and produces two outputs. By software reconfiguration, it can store and execute 102 if-then rules of the following simpler format using the same datapath: IF A and B Then Do E. With this format the chip takes two inputs and produces one outputs. We have built two VME-bus board systems based on this chip for Oak Ridge National Laboratory (ORNL). The board is now installed in a robot at ORNL. Researchers uses this board for experiment in autonomous robot navigation. The Fuzzy Logic system board places the Fuzzy chip into a VMEbus environment. High level C language functions hide the operational details of the board from the applications programme . The programmer treats rule memories and fuzzification function memories as local structures passed as parameters to the C functions. ASIC fuzzy inference hardware is extremely fast, but they are limited in generality. Many aspects of the design are limited or fixed. We have proposed to designing a are limited or fixed. We have proposed to designing a fuzzy information processor as an application specific processor using a quantitative approach. The quantitative approach was developed by RISC designers. In effect, we are interested in evaluating the effectiveness of a specialized RISC processor for fuzzy information processing. As the first step, we measured the possible speed-up of a fuzzy inference program based on if-then rules by an introduction of specialized instructions, i.e., min and max instructions. The minimum and maximum operations are heavily used in fuzzy logic applications as fuzzy intersection and union. We performed measurements using a MIPS R3000 as a base micropro essor. The initial result is encouraging. We can achieve as high as a 2.5 increase in inference speed if the R3000 had min and max instructions. Also, they are useful for speeding up other fuzzy operations such as bounded product and bounded sum. The embedded processor's main task is to control some device or process. It usually runs a single or a embedded processer to create an embedded processor for fuzzy control is very effective. Table I shows the measured speed of the inference by a MIPS R3000 microprocessor, a fictitious MIPS R3000 microprocessor with min and max instructions, and a UNC/MCNC ASIC fuzzy inference chip. The software that used on microprocessors is a simulator of the ASIC chip. The first row is the computation time in seconds of 6000 inferences using 51 rules where each fuzzy set is represented by an array of 64 elements. The second row is the time required to perform a single inference. The last row is the fuzzy logical inferences per second (FLIPS) measured for ach device. There is a large gap in run time between the ASIC and software approaches even if we resort to a specialized fuzzy microprocessor. As for design time and cost, these two approaches represent two extremes. An ASIC approach is extremely expensive. It is, therefore, an important research topic to design a specialized computing architecture for fuzzy applications that falls between these two extremes both in run time and design time/cost. TABLEI INFERENCE TIME BY 51 RULES {{{{Time }}{{MIPS R3000 }}{{ASIC }}{{Regular }}{{With min/mix }}{{6000 inference 1 inference FLIPS }}{{125s 20.8ms 48 }}{{49s 8.2ms 122 }}{{0.0038s 6.4㎲ 156,250 }} }}

  • PDF

Change Detection in Bitemporal Remote Sensing Images by using Feature Fusion and Fuzzy C-Means

  • Wang, Xin;Huang, Jing;Chu, Yanli;Shi, Aiye;Xu, Lizhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권4호
    • /
    • pp.1714-1729
    • /
    • 2018
  • Change detection of remote sensing images is a profound challenge in the field of remote sensing image analysis. This paper proposes a novel change detection method for bitemporal remote sensing images based on feature fusion and fuzzy c-means (FCM). Different from the state-of-the-art methods that mainly utilize a single image feature for difference image construction, the proposed method investigates the fusion of multiple image features for the task. The subsequent problem is regarded as the difference image classification problem, where a modified fuzzy c-means approach is proposed to analyze the difference image. The proposed method has been validated on real bitemporal remote sensing data sets. Experimental results confirmed the effectiveness of the proposed method.