• Title/Summary/Keyword: multiple cracking

Search Result 93, Processing Time 0.029 seconds

Nuclide Release from Penetrations in Radioactive Waste Container (방사성 폐기물 저장용기 표면의 결함으로부터 핵종유출 연구)

  • Kim, Chang-Lak
    • Nuclear Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.302-307
    • /
    • 1989
  • Nuclide release through penetrations in radioactive waste container is analyzed. Penetrations may result from corrosion or cracking and may be through the container material or through deposits of corrosion products. The analysis deals with the resultant nuclide release, but not with the way these penetrations occur. Numerical illustrations show that mass transport from multiple holes can be significant and may approach the mass transfer rate calculated from bare waste forms. Although partially-failed containers may present an important long-term barrier to release of radionuclides, numerous small holes on a container surface have the potential of bypassing the effectiveness of these barriers.

  • PDF

Fracture Analysis of Hole Flanging Process for High Strength Steel Sheets (고강도 열연판재의 홀 플랜정시 파단특성연구)

  • 김정운;김봉준;문영훈
    • Transactions of Materials Processing
    • /
    • v.10 no.6
    • /
    • pp.465-470
    • /
    • 2001
  • Hole flanging experiments are performed on flat circular plates with a hole in the center and the flangeability and fracture behaviors of TRIP steels and ferrite-Bainite duplex steels were examined. In the hole flanging, deformation by lip and petalling occurs when plates are struck by punches of various shapes and high circumferential strains induced in the target material cause radial cracking and the subsequent rotation of the affected plate material in a number of symmetric petals. In all cases, failure of the plate was due to lip fracture that results from multiple localized neckings that take place around the hole periphery where straining is most severe and a somewhat regular pattern was observed in a fracture shape. The neck characteristics in flange formation and the transition from the lip to petal mode at which fracture occurs were compared with two materials.

  • PDF

Flexural performance and fiber distribution of an extruded DFRCC panel

  • Lee, Bang Yeon;Han, Byung-Chan;Cho, Chang-Geun;Kim, Yun Yong
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.105-119
    • /
    • 2012
  • This paper presents the mix composition and production method that was applied to an extruded Ductile Fiber Reinforced Cement Composite (DFRCC) panel, as well as the flexural performance, represented by deformation hardening behavior with multiple cracking. The effect of fiber distribution characteristics on the flexural behavior of the panel is also addressed. In order to demonstrate the fiber distribution effect, a series of experiments and analyses, including a sectional image analysis and micromechanical analysis, was performed. From the experimental and analysis results, it was found that the flexural behavior of the panel was highly affected by a slight variation in the mix composition. In terms of the average fiber orientation, the fiber distribution was found to be similar to that derived under the assumption of a two-dimensional random distribution, irrespective of the mix composition. In contrast, the probability density function for the fiber orientation was measured to vary depending on the mix composition.

A Study on the Estimation of Tensile Properties of High Performance Fiber Reinforced Cementitious Composites (고인성 시멘트복합체의 인장성능평가에 관한 연구)

  • Han, Byung-Chan;Kim, Jae-Hwan;Lim, Seung-Chan;Joen, Yong-Jae;Chung, Yun-Suk;Kwon, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.357-360
    • /
    • 2006
  • In this study, it was proposed a direct tensile testing machine(DTTM) to be simple and to be applied to High Performance Fiber Reinforced Cementitious Composites(HPFRCCs), and it was examined the tensile properties of HPFRCCs by this machine. As a results, it was confirmed that a direct tensile test of HPFRCCs could be certainly carried out DTTM to be developed in this study. Also, tensile strength and yield strength of HPFRCCs were similar regardless of specimens thickness. And, all specimens revealed the stable strain-hardening behavior and multiple cracking in flexible and tensile loads. But, deviation of strain at ultimate tensile strength increased with the increase of specimen thickness.

  • PDF

Shear Behavior Characteristics of Joint according to Strain-Hardening Cement Composite Types (시멘트 복합체 종류에 따른 접합부의 전단거동특성)

  • Nam, Sang-Hyun;Jeon, Esther;Yun, Hyun-Do;Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.27-28
    • /
    • 2010
  • This paper discusses behavior of Joint with strain hardening cement composites(SHCC). The main variables considered include the type of cement composites(mortar, SHCC with hybrid fiber) and shape and space of reinforcement. As the result of the tests, for the same reinforcement detail, SHCC specimen showed better overall behavior(stress, ductile, multiple cracking) than mortar specimen.

  • PDF

Nonlinear Shear Model of Fiber-Reinforced Cementitious Composite Panels (고인성 시멘트 복합체 패널의 비선형 전단모델)

  • Cho, Chang-Geun;Kim, Yun-Yong;Kim, Jeong-Sup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.155-156
    • /
    • 2010
  • In current study, a nonlinear model for the shear behavior of Fiber-Reinforced Cementitious Composite (FRCC) panels has been introduced. The model is dealing with the multiple micro-cracking mechanism of FRCC materials which induce the high-ductile tensile characteristic, the compressive strain-softening, and the shear transfer mechanism in the cracked FRCC.

  • PDF

Wet-mix Shotcreting Application of High Ductile Fiber Reinforced Mortar Designed by Optimizing Mix Proportion

  • Kim Yun Yong;Kim Jeong Su;Kim Jin Keun;Ha Gee Joo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.581-584
    • /
    • 2004
  • High ductile fiber reinforced mortar suitable for wet-mix shotcreting (sprayable ductile mortar) 10 the fresh state, while maintaining tensile strain-hardening behavior in the hardened state, has been developed based on micromechanics and workability control. In the development concept of sprayable ductile mortar, micromechanics is adopted to properly select the matrix, fiber, and interface properties to exhibit strain hardening and multiple cracking behaviors in the composites. Within the pre-determined micromechanical constraints, the workability is controlled by optimizing mix proportions. A series of spray tests show the excellent pumpability and sprayability of the sprayable ductile mortar. Subsequent direct tensile tests demonstrate that the tensile performance of sprayed mortar is comparable to that of cast mortar, for the same mix design.

  • PDF

Assessing Compressive Failure Characteristics of Hybrid Fiber Reinforced Cementitious Composites by Acoustic Emission (AE기법에 의한 하이브리드 섬유보강 시멘트복합체의 압축파괴특성 평가)

  • Kim, Sun-Woo;Ji, Sang-Kyu;Jeon, Su-Man;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.229-232
    • /
    • 2006
  • The HPFRCCs show that the multiple crack propagation, high tensile strength and ductility due to the interfacial bonding of the fibers to the cement matrix. Moreover, performance of cement composites varies according to type and weight contents of reinforcing fiber. and HPFRCCs with hybrid fiber have better performance than HPFRCCs with single fiber in damage tolerance. Total four cylindrical specimens were tested, and the main variables were the type and weight contents of fiber, which was polyvinylalchol (PVA), polyethylene (PE). In order to clarify effect of hybrid types on the characteristics of fracture and damage process in cement composites, AE method was performed to detect micro-cracking in HPFRCCs under cyclic compression. Loading conditions of the uniaxial compression test were monotonic and cyclic loading. And from AE parameter value, it is found that the second and third compressive load cycles resulted in successive decrease of the amplitude as compared with the first compressive load cvcle.

  • PDF

Experimental and analytical investigation of the shear behavior of strain hardening cementitious composites

  • Georgiou, Antroula V.;Pantazopoulou, Stavroula J.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.19-30
    • /
    • 2019
  • The mechanical behavior of Fiber Reinforced Cementitious Composites (FRCC) under direct shear is studied through experiment and analytical simulation. The cementitious composite considered contains 55% replacement of cement with fly ash and 2% (volume ratio) of short discontinuous synthetic fibers (in the form of mass reinforcement, comprising PVA - Polyvinyl Alcohol fibers). This class of cementitious materials exhibits ductility under tension with the formation of multiple fine cracks and significant delay of crack stabilization (i.e., localization of cracking at a single location). One of the behavioral parameters that concern structural design is the shear strength of this new type of fiber reinforced composites. This aspect was studied in the present work with the use of Push-off tests. The shear strength is then compared to the materials' tensile and splitting strength values.

Saw-tooth softening/stiffening - a stable computational procedure for RC structures

  • Rots, Jan G.;Invernizzi, Stefano;Belletti, Beatrice
    • Computers and Concrete
    • /
    • v.3 no.4
    • /
    • pp.213-233
    • /
    • 2006
  • Over the past years techniques for non-linear analysis have been enhanced significantly via improved solution procedures, extended finite element techniques and increased robustness of constitutive models. Nevertheless, problems remain, especially for real world structures of softening materials like concrete. The softening gives negative stiffness and risk of bifurcations due to multiple cracks that compete to survive. Incremental-iterative techniques have difficulties in selecting and handling the local peaks and snap-backs. In this contribution, an alternative method is proposed. The softening diagram of negative slope is replaced by a saw-tooth diagram of positive slopes. The incremental-iterative Newton method is replaced by a series of linear analyses using a special scaling technique with subsequent stiffness/strength reduction per critical element. It is shown that this event-by-event strategy is robust and reliable. First, the model is shown to be objective with respect to mesh refinement. Next, the example of a large-scale dog-bone specimen in direct tension is analyzed using an isotropic version of the saw-tooth model. The model is capable of automatically providing the snap-back response. Subsequently, the saw-tooth model is extended to include anisotropy for fixed crack directions to accommodate both tensile cracking and compression strut action for reinforced concrete. Three different reinforced concrete structures are analyzed, a tension-pull specimen, a slender beam and a slab. In all cases, the model naturally provides the local peaks and snap-backs associated with the subsequent development of primary cracks starting from the rebar. The secant saw-tooth stiffness is always positive and the analysis always 'converges'. Bifurcations are prevented due to the scaling technique.