• Title/Summary/Keyword: multiple classification analysis

Search Result 462, Processing Time 0.033 seconds

A Study on Classifications of Remote Sensed Multispectral Image Data using Soft Computing Technique - Stressed on Rough Sets - (소프트 컴퓨팅기술을 이용한 원격탐사 다중 분광 이미지 데이터의 분류에 관한 연구 -Rough 집합을 중심으로-)

  • Won Sung-Hyun
    • Management & Information Systems Review
    • /
    • v.3
    • /
    • pp.15-45
    • /
    • 1999
  • Processing techniques of remote sensed image data using computer have been recognized very necessary techniques to all social fields, such as, environmental observation, land cultivation, resource investigation, military trend grasp and agricultural product estimation, etc. Especially, accurate classification and analysis to remote sensed image da are important elements that can determine reliability of remote sensed image data processing systems, and many researches have been processed to improve these accuracy of classification and analysis. Traditionally, remote sensed image data processing systems have been processed 2 or 3 selected bands in multiple bands, in this time, their selection criterions are statistical separability or wavelength properties. But, it have be bring up the necessity of bands selection method by data distribution characteristics than traditional bands selection by wavelength properties or statistical separability. Because data sensing environments change from multispectral environments to hyperspectral environments. In this paper for efficient data classification in multispectral bands environment, a band feature extraction method using the Rough sets theory is proposed. First, we make a look up table from training data, and analyze the properties of experimental multispectral image data, then select the efficient band using indiscernibility relation of Rough set theory from analysis results. Proposed method is applied to LANDSAT TM data on 2 June 1992. From this, we show clustering trends that similar to traditional band selection results by wavelength properties, from this, we verify that can use the proposed method that centered on data properties to select the efficient bands, though data sensing environment change to hyperspectral band environments.

  • PDF

User classification and location tracking algorithm using deep learning (딥러닝을 이용한 사용자 구분 및 위치추적 알고리즘)

  • Park, Jung-tak;Lee, Sol;Park, Byung-Seo;Seo, Young-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.78-79
    • /
    • 2022
  • In this paper, we propose a technique for tracking the classification and location of each user through body proportion analysis of the normalized skeletons of multiple users obtained using RGB-D cameras. To this end, each user's 3D skeleton is extracted from the 3D point cloud and body proportion information is stored. After that, the stored body proportion information is compared with the body proportion data output from the entire frame to propose a user classification and location tracking algorithm in the entire image.

  • PDF

COMPOUNDED METHOD FOR LAND COVERING CLASSIFICATION BASED ON MULTI-RESOLUTION SATELLITE DATA

  • HE WENJU;QIN HUA;SUN WEIDONG
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.116-119
    • /
    • 2005
  • As to the synthetical estimation of land covering parameters or the compounded land covering classification for multi-resolution satellite data, former researches mainly adopted linear or nonlinear regression models to describe the regression relationship of land covering parameters caused by the degradation of spatial resolution, in order to improve the retrieval accuracy of global land covering parameters based on 1;he lower resolution satellite data. However, these methods can't authentically represent the complementary characteristics of spatial resolutions among different satellite data at arithmetic level. To resolve the problem above, a new compounded land covering classification method at arithmetic level for multi-resolution satellite data is proposed in this .paper. Firstly, on the basis of unsupervised clustering analysis of the higher resolution satellite data, the likelihood distribution scatterplot of each cover type is obtained according to multiple-to-single spatial correspondence between the higher and lower resolution satellite data in some local test regions, then Parzen window approach is adopted to derive the real likelihood functions from the scatterplots, and finally the likelihood functions are extended from the local test regions to the full covering area of the lower resolution satellite data and the global covering area of the lower resolution satellite is classified under the maximum likelihood rule. Some experimental results indicate that this proposed compounded method can improve the classification accuracy of large-scale lower resolution satellite data with the support of some local-area higher resolution satellite data.

  • PDF

A Implementation of Optimal Multiple Classification System using Data Mining for Genome Analysis

  • Jeong, Yu-Jeong;Choi, Gwang-Mi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.43-48
    • /
    • 2018
  • In this paper, more efficient classification result could be obtained by applying the combination of the Hidden Markov Model and SVM Model to HMSV algorithm gene expression data which simulated the stochastic flow of gene data and clustering it. In this paper, we verified the HMSV algorithm that combines independently learned algorithms. To prove that this paper is superior to other papers, we tested the sensitivity and specificity of the most commonly used classification criteria. As a result, the K-means is 71% and the SOM is 68%. The proposed HMSV algorithm is 85%. These results are stable and high. It can be seen that this is better classified than using a general classification algorithm. The algorithm proposed in this paper is a stochastic modeling of the generation process of the characteristics included in the signal, and a good recognition rate can be obtained with a small amount of calculation, so it will be useful to study the relationship with diseases by showing fast and effective performance improvement with an algorithm that clusters nodes by simulating the stochastic flow of Gene Data through data mining of BigData.

Relationship Between Function Classification Systems and the PEDI Functional Skills in Children With Cerebral Palsy (뇌성마비 아동에서 기능분류체계와 소아장애평가척도의 기능적 기술 사이 관련성)

  • Park, Eun-Young;Kim, Won-Ho
    • Physical Therapy Korea
    • /
    • v.21 no.3
    • /
    • pp.55-62
    • /
    • 2014
  • This study investigated the relationship between function classification systems and the Pediatric Evaluation of Disability Inventory (PEDI) functional skills in children with cerebral palsy (CP). Two hundred and eleven children with CP participated in this study. The Korean-Gross Motor Function Classification System (K-GMFCS), Korean-Manual Ability Classification System (K-MACS), Korean-Communication Function Classification System (K-CFCS), and self-care, mobility, and social function domains of the Korean-Pediatric Evaluation of Disability Inventory (K-PEDI) functional skills were measured by physical therapists or occupational therapists. All of the function classification systems were significantly correlated with PEDI functional skills ($r_s$=-.549 to -.826) (p<.05). Especially, K-GMFCS, K-MACS, and K-CFCS were correlated significantly with mobility, self-care, and social function, respectively. Using stepwise multiple regression analysis, we established that K-GMFCS, K-MACS, and K-CFCS were predictors of self-care skills (74.3%) and mobility skills (79.5%) of the K-PEDI (p<.05). In addition, K-CFCS and K-MACS were predictors of social function (65.9%) of the K-PEDI (p<.05). The information gathered in this study using the levels measured in the function classification systems may be useful to clinicians for estimating the PEDI functional skills in children with CP.

Malware Family Recommendation using Multiple Sequence Alignment (다중 서열 정렬 기법을 이용한 악성코드 패밀리 추천)

  • Cho, In Kyeom;Im, Eul Gyu
    • Journal of KIISE
    • /
    • v.43 no.3
    • /
    • pp.289-295
    • /
    • 2016
  • Malware authors spread malware variants in order to evade detection. It's hard to detect malware variants using static analysis. Therefore dynamic analysis based on API call information is necessary. In this paper, we proposed a malware family recommendation method to assist malware analysts in classifying malware variants. Our proposed method extract API call information of malware families by dynamic analysis. Then the multiple sequence alignment technique was applied to the extracted API call information. A signature of each family was extracted from the alignment results. By the similarity of the extracted signatures, our proposed method recommends three family candidates for unknown malware. We also measured the accuracy of our proposed method in an experiment using real malware samples.

Improved Algorithm for Fully-automated Neural Spike Sorting based on Projection Pursuit and Gaussian Mixture Model

  • Kim, Kyung-Hwan
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.705-713
    • /
    • 2006
  • For the analysis of multiunit extracellular neural signals as multiple spike trains, neural spike sorting is essential. Existing algorithms for the spike sorting have been unsatisfactory when the signal-to-noise ratio(SNR) is low, especially for implementation of fully-automated systems. We present a novel method that shows satisfactory performance even under low SNR, and compare its performance with a recent method based on principal component analysis(PCA) and fuzzy c-means(FCM) clustering algorithm. Our system consists of a spike detector that shows high performance under low SNR, a feature extractor that utilizes projection pursuit based on negentropy maximization, and an unsupervised classifier based on Gaussian mixture model. It is shown that the proposed feature extractor gives better performance compared to the PCA, and the proposed combination of spike detector, feature extraction, and unsupervised classification yields much better performance than the PCA-FCM, in that the realization of fully-automated unsupervised spike sorting becomes more feasible.

New Sound Spectral Analysis of Prosthetic Heart Valve (인공판막음의 새로운 스펙트럼 분석 연구)

  • Lee, H.J.;Kim, S.H.;Chang, B.C.;Tack, G.;Cho, B.K.;Yoo, S.K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.75-78
    • /
    • 1997
  • In this paper we present new sound spectral analysis methods or prosthetic heart valve sounds. Phonocardiograms(PCG) of prosthetic heart valve were analyzed in order to derive frequency domain feature suitable or the classification of the valve state. The fast orthogonal search method and MUSIC (MUltiple SIgnal Classification) method are described or finding the significant frequencies in PCG. The fast orthogonal search method is effective with short data records and cope with noisy, missing and unequally-spaced data. MUSIC method's key to the performance is the division of the information in the autocorrelation matrix or the data matrix into two vector subspaces, one a signal subspace and the other a noise subspace.

  • PDF

A Novel Data Prediction Model using Data Weights and Neural Network based on R for Meaning Analysis between Data (데이터간 의미 분석을 위한 R기반의 데이터 가중치 및 신경망기반의 데이터 예측 모형에 관한 연구)

  • Jung, Se Hoon;Kim, Jong Chan;Sim, Chun Bo
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.4
    • /
    • pp.524-532
    • /
    • 2015
  • All data created in BigData times is included potentially meaning and correlation in data. A variety of data during a day in all society sectors has become created and stored. Research areas in analysis and grasp meaning between data is proceeding briskly. Especially, accuracy of meaning prediction and data imbalance problem between data for analysis is part in course of something important in data analysis field. In this paper, we proposed data prediction model based on data weights and neural network using R for meaning analysis between data. Proposed data prediction model is composed of classification model and analysis model. Classification model is working as weights application of normal distribution and optimum independent variable selection of multiple regression analysis. Analysis model role is increased prediction accuracy of output variable through neural network. Performance evaluation result, we were confirmed superiority of prediction model so that performance of result prediction through primitive data was measured 87.475% by proposed data prediction model.

Temporal Classification Method for Forecasting Power Load Patterns From AMR Data

  • Lee, Heon-Gyu;Shin, Jin-Ho;Park, Hong-Kyu;Kim, Young-Il;Lee, Bong-Jae;Ryu, Keun-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.393-400
    • /
    • 2007
  • We present in this paper a novel power load prediction method using temporal pattern mining from AMR(Automatic Meter Reading) data. Since the power load patterns have time-varying characteristic and very different patterns according to the hour, time, day and week and so on, it gives rise to the uninformative results if only traditional data mining is used. Also, research on data mining for analyzing electric load patterns focused on cluster analysis and classification methods. However despite the usefulness of rules that include temporal dimension and the fact that the AMR data has temporal attribute, the above methods were limited in static pattern extraction and did not consider temporal attributes. Therefore, we propose a new classification method for predicting power load patterns. The main tasks include clustering method and temporal classification method. Cluster analysis is used to create load pattern classes and the representative load profiles for each class. Next, the classification method uses representative load profiles to build a classifier able to assign different load patterns to the existing classes. The proposed classification method is the Calendar-based temporal mining and it discovers electric load patterns in multiple time granularities. Lastly, we show that the proposed method used AMR data and discovered more interest patterns.