• Title/Summary/Keyword: multiple channels

Search Result 903, Processing Time 0.027 seconds

Implementation and Evaluation of a Robot Operating System-based Virtual Lidar Driver (로봇운영체제 기반의 가상 라이다 드라이버 구현 및 평가)

  • Hwang, Inho;Kim, Kanghee
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.10
    • /
    • pp.588-593
    • /
    • 2017
  • In this paper, we propose a LiDAR driver that virtualizes multiple inexpensive LiDARs (Light Detection and Ranging) with a smaller number of scan channels on an autonomous vehicle to replace a single expensive LiDAR with a larger number of scan channels. As a result, existing SLAM (Simultaneous Localization And Mapping) algorithms can be used with no modifications developed assuming a single LiDAR. In the paper, the proposed driver was implemented on the Robot Operating System and was evaluated with an existing SLAM algorithm. The results show that the proposed driver, combined with a filter to control the density of points in a 3D map, is compatible with the existing algorithm.

Performance of the Concatenated System of MTCM Codes with STBC on Fast Rayleigh Fading Channels (빠른 레일리 페이딩채널에서 MTCM 부호와 STBC를 결합한 시스템의 성능평가)

  • Jin, Ik-Soo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.141-148
    • /
    • 2009
  • Space-time block codes (STBC) have no coding gain but they provide a full diversity gain with relatively low encoder/decoder complexity. Therefore, STBC should be concatenated with an outer code which provides an additional coding gain. In this paper, we consider the concatenation of multiple trellis-coded modulation (MTCM) codes with STBC for achieving significant coding gain with full antenna diversity. Using criteria of equal transmit power, spectral efficiency and the number of trellis states, the performance of concatenated scheme is compared to that of previously known space-time trellis codes (STTC) in terms of frame error rate (FER). Simulation results show that MTCM codes concatenated with STBC offer better performance on fast Rayleigh fading channels, than previously known STTC with two transmit antennas and one receive antenna.

  • PDF

CFD-based Design and Analysis of the Ventilation of an Electric Generator Model, Validated with Experiments

  • Jamshidi, Hamed;Nilsson, Hakan;Chernoray, Valery
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.2
    • /
    • pp.113-123
    • /
    • 2015
  • The efficiency of the ventilation system is a key point for durable and reliable electric generators. The design of such system requires a detailed understanding of the air flow in the generator. Computational fluid dynamics (CFD) has the potential to resolve the lack of information in this field. The present work analyses the air flow inside a generator model. The model is designed using a CFD-based approach, and manufactured by taking into consideration the experimental and numerical requirements and limitations. The emphasis is on the possibility to accurately predict and experimentally measure the flow distribution inside the stator channels. A major part of the work is focused on the design of an intake and a fan that gives an evenly distributed flow with a high flow rate. The intake also serves as an accurate flowmeter. Experimental results are presented, of the total volume flow rate, the total pressure and velocity distributions. Steady-state CFD simulations are performed using the FOAM-extend CFD toolbox. The simulations are based on the multiple rotating reference frames method. The results from the frozen rotor and mixing plane rotor-stator coupling approaches are compared. It is shown that the fan design provides a sufficient flow rate for the stator channels, which is not the case without the fan or with a previous fan design. The detailed experimental and numerical results show an excellent agreement, proving that the results reliable.

Power Saving and Improving the Throughput of Spectrum Sharing in Wideband Cognitive Radio Networks

  • Li, Shiyin;Xiao, Shuyan;Zhang, Maomao;Zhang, Xiaoguang
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.394-405
    • /
    • 2015
  • This paper considers a wideband cognitive radio network which can simultaneously sense multiple narrowband channels and thus aggregate the detected available channels for transmission and proposes a novel cognitive radio system that exhibits improved sensing throughput and can save power consumption of secondary user (SU) compared to the conventional cognitive radio system studied so far. More specifically, under the proposed cognitive radio system, we study the problem of designing the optimal sensing time and power allocation strategy, in order to maximize the ergodic throughput of the proposed cognitive radio system under two different schemes, namely the wideband sensing-based spectrum sharing scheme and the wideband opportunistic spectrum access scheme. In our analysis, besides the average interference power constraint at primary user, the average transmit power constraint of SU is also considered for the two schemes and then a subgradient algorithm is developed to obtain the optimal sensing time and the corresponding power allocation strategy. Finally, numerical simulations are presented to verify the performance of the two proposed schemes.

Analysis and Utilization of the Power Delay Profile Characteristics of Dispersive Fading Channels (시간 지연을 갖는 페이딩 채널의 전력 지연 분포 특성 분석 및 활용)

  • Park, Jong-Hyun;Kim, Jae-Won;Song, Eui-Seok;Sung, Won-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8C
    • /
    • pp.681-688
    • /
    • 2007
  • Applying an appropriate received signal processing algorithm based on the channel characteristics is important to improve the receiver performance. Wireless channels in general exhibit various time-delay characteristics depending on their power delay profile. When the estimated channel power summation is used to determine the amount of time delay, a channel adaptive receiver structure can be implemented. In this paper, we derive a closed-form expression for the error probability of the channel classification when the estimated channel power summation is used to classify channel groups having different time delay characteristics, and present the performance gain utilizing multiple estimation results.

A study on the ENG Signal Processing for Multichannel System (다중 채널을 갖는 근전도의 신호처리에 관한 연구 (I))

  • Kwon, J.W.;Jang, Y.G.;Jung, K.H.;Min, M.K.;Hong, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1991 no.11
    • /
    • pp.25-29
    • /
    • 1991
  • In the field of prosthesis arm control, tile pattern classification of the EMG signal is a required basis process and also the estimation of force from col looted EMG data is another necessary duty. But unfortunately, what we've got is not real force but an EMG signal which contains the information of force. This is the reason why he estimate the force from the EMG data. In this paper, when we handle the EMG signal to estimate the force, spatial prewhitening process is applied from which the spatial correlation between the channels are removed. And after the orthogonal transformation, which is used in the force estimation process the transformed signal is inputed into the probabilistic model for pattern classification. To verify the different results of the multiple channels, SNR(signal to noire ratio) function is introduced.

  • PDF

Exact Performance Analysis of AF Based Hybrid Satellite-Terrestrial Relay Network with Co-Channel Interference

  • Javed, Umer;He, Di;Liu, Peilin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3412-3431
    • /
    • 2015
  • This paper considers the effect of co-channel interference on hybrid satellite-terrestrial relay network. In particular, we investigate the problem of amplify-and-forward (AF) relaying in hybrid satellite-terrestrial link, where the relay is interfered by multiple co-channel interferers. The direct link between satellite and terrestrial destination is not available due to masking by surroundings. The destination node can only receive signals from satellite with the assistance of a relay node situated at ground. The satellite-relay link is assumed to follow the shadowed Rice fading, while the channels of interferer-relay and relay-destination links experience Nakagami-m fading. For the considered AF relaying scheme, we first derive the analytical expression for the moment generating function (MGF) of the output signal-to-interference-plus-noise ratio (SINR). Then, we use the obtained MGF to derive the average symbol error rate (SER) of the considered scenario for M-ary phase shift keying (M-PSK) constellation under these generalized fading channels.

Security Performance Analysis of DF Cooperative Relay Networks over Nakagami-m Fading Channels

  • Zhang, Huan;Lei, Hongjiang;Ansari, Imran Shafique;Pan, Gaofeng;Qaraqe, Khalid A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2416-2432
    • /
    • 2017
  • In this paper, we investigate the security performance for cooperative networks over Nakagami-m fading channels. Based on whether the channel state information (CSI) of wiretap link is available or not, optimal relay selection (ORS) and suboptimal relay selection (SRS) schemes are considered. Also, multiple relays combining (MRC) scheme is considered for comparison purpose. The exact and asymptotic closed-form expressions for secrecy outage probability (SOP) are derived and simulations are presented to validate the accuracy of our proposed analytical results. The numerical results illustrate that the ORS is the best scheme and SRS scheme is better than MRC scheme in some special scenarios such as when the destination is far away from the relays. Furthermore, through asymptotic analysis, we obtain the closed-form expressions for the secrecy diversity order and secrecy array gain for the three different selection schemes. The secrecy diversity order is closely related to the number of relays and fading parameter between relay and destination.

Performance Analysis of Symbol Mapping Diversity in Coded MIMO-OFDM Systems over Fading Channels (페이딩 채널에서 부호화된 MIMO-OFDM 시스템의 심볼맵핑 다이버시티 성능 분석)

  • Park, Won-Seok;Kang, Jin-Whan;Kim, Sang-Hyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4A
    • /
    • pp.386-393
    • /
    • 2010
  • In this paper, we analyse HARQ scheme that utilizes symbol mapping diversity (SMD) techniques such as MDSM and CORE. The exploitation feasibility of MDSM and CORE is evaluated in the perspective of system complexity and storage capacity as we consider a BICM system based on 3GPP LTE standards and multipath fading channels. Also, a simple method which obtains SMD effects by circularly shifting bit-block in a codeword is proposed. The experimental results performed in BICM-OFDM systems with single antenna as well as multiple antennas show that frame error rate of the proposed method is close to that of CORE while having lower complexity.

A Study for Analysing Key Factors for Establishing the Omni-Channel Customer System in a Financial Enterprise Using ANP (ANP 모형을 이용한 금융기업의 옴니채널 고객 시스템의 중요 구축 요소 분석)

  • Hwang, Hyun-Cheon;Kim, Woo-Je
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.1
    • /
    • pp.50-60
    • /
    • 2020
  • The omni-channel customer system is the communication system between enterprise and customer via multiple channels such as mail, email, SMS, and mobile. The omni-channel customer system complements each other channel through the integration of each channel. The purpose of this research is to derive key factors and calculate the weights that a financial enterprise considers when adopting the omni-channel customer system. For this research, we analyzed the request for proposal documents used for the omni-channel customer system implementation projects in the financial enterprise. Also, we derived, classified, and stratified the key factors to be considered for the introduction of the omni-channel customer system in the financial enterprise. As a result of analyzing the key factors, customer experience, operations, and security were identified as the components of the top category in introducing the omni-channel customer system in the financial sector. Furthermore, the weight for each key factor was calculated by using ANP. As a result of ANP, operations, customer experience, and security were important in order. Also, the degree of easiness for connecting with other systems and the various abilities for representing the contents of the omni-channels were derived as the important key factors.