• Title/Summary/Keyword: multiple channel

Search Result 2,114, Processing Time 0.032 seconds

Compressed Channel Feedback for Correlated Massive MIMO Systems

  • Sim, Min Soo;Park, Jeonghun;Chae, Chan-Byoung;Heath, Robert W. Jr.
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.95-104
    • /
    • 2016
  • Massive multiple-input multiple-output (MIMO) is a promising approach for cellular communication due to its energy efficiency and high achievable data rate. These advantages, however, can be realized only when channel state information (CSI) is available at the transmitter. Since there are many antennas, CSI is too large to feed back without compression. To compress CSI, prior work has applied compressive sensing (CS) techniques and the fact that CSI can be sparsified. The adopted sparsifying bases fail, however, to reflect the spatial correlation and channel conditions or to be feasible in practice. In this paper, we propose a new sparsifying basis that reflects the long-term characteristics of the channel, and needs no change as long as the spatial correlation model does not change. We propose a new reconstruction algorithm for CS, and also suggest dimensionality reduction as a compression method. To feed back compressed CSI in practice, we propose a new codebook for the compressed channel quantization assuming no other-cell interference. Numerical results confirm that the proposed channel feedback mechanisms show better performance in point-to-point (single-user) and point-to-multi-point (multi-user) scenarios.

Channel Capacity Maximization in a Distorted 2×2 LOS MIMO Link

  • Ko, In-Chang;Park, Hyung-Chul
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.2
    • /
    • pp.72-77
    • /
    • 2018
  • This paper presents a novel channel capacity maximization method for a distorted $2{\times}2$ line-of-sight (LOS) multiple-input multiple-output (MIMO) link. A LOS MIMO link may be distorted by the influence of environmental factors such that the channel capacity of the LOS MIMO link may be degraded. By using the proposed method, the channel capacity of a distorted $2{\times}2$ LOS MIMO link can be the same as that of the ideal $2{\times}2$ LOS MIMO link. The proposed method employs an additional receiver antenna to maximize the channel capacity. In contrast to a $3{\times}2$ LOS MIMO link, a receiver circuit for a third receiving antenna is not necessary. Hence, the receiver for the proposed method is much simpler than that for a $3{\times}2$ LOS MIMO link. We determine the optimal position of the additional receiver antenna analytically. Simulation results show that the channel capacity can approach the ideal using the proposed method.

A Non-Stationary Geometry-Based Cooperative Scattering Channel Model for MIMO Vehicle-to-Vehicle Communication Systems

  • Qiu, Bin;Xiao, Hailin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.2838-2858
    • /
    • 2019
  • Traditional channel models for vehicle-to-vehicle (V2V) communication usually assume fixed velocity in static scattering environment. In the realistic scenarios, however, time-variant velocity for V2V results in non-stationary statistical properties of wireless channels. Dynamic scatterers with random velocities and directions have been always utilized to depict the non-stationary statistical properties of the channel. In this paper, a non-stationary geometry-based cooperative scattering channel model is proposed for multiple-input multiple-output (MIMO) V2V communication systems, where a birth-death process is used to capture the appearance and disappearance dynamic properties of moving scatterers that reflect the time-variant time correlation and Doppler spectrum characteristics. Moreover, our model has more straight and concise to study the impact of the vehicular traffic density on channel characteristics and thus avoid complicated procedure in deriving the analytical expressions of the channel parameters and functions. The numerical results validate our analysis and demonstrate that setting important parameters of our model can appropriately build up more purposeful measurement campaigns in the future.

An Efficient Mobile Transaction Processing Scheme over Multiple Wireless Broadcast Channels (다중 무선 방송채널에서의 효과적인 모바일 트랜잭션 처리 기법)

  • Jeong, Ho-Ryun;Jung, Sung-Won;Park, Sung-Wook
    • Journal of KIISE:Databases
    • /
    • v.35 no.3
    • /
    • pp.257-271
    • /
    • 2008
  • Wireless broadcast environments has character that a number of mobile client can receive data streaming from central server no matter how they are so many. Because it is asymmetric bandwidth in that uplink and downlink bandwidth are different. This advantage helps wireless broadcast environments is used in many applications. These applications work almost read operation and need control concurrency using transaction unit. Previous concurrency control scheme in single channel is not adapted in multi channel environments because consistency of data are broken when a mobile client tunes in a broadcast cycle in a channel and then move into another channel and listen to different broadcast cycle with already accessed broadcast cycle. In this paper, we propose concurrency control for read-only mobile transactions in multiple wireless broadcast channel. First of all, we adapt index and data dedicated channel and propose LBCPC(Longest Broadcast Cycle Per Channel) as new unit of consistency. In index dedicated channel, it is repeatedly broadcasted data in same BCPC(Broadcast Cycle Per Channel) until LBCPC. And mobile transaction executes validation using control information every LBCPC. As a result, consistency of data is kept and average response time is shorter than one in single channel because waiting time for restart reduces. And as control information is broadcasted more frequently than in single channel, it is guaranteed currency about data accessed by transaction. Finally, according to the simulation result, we verify performance of our scheme in multi channel as comparing average response time with single channel.

A Robust Adaptive MIMO-OFDM System Over Multipath Transmission Channels (다중경로 전송 채널 특성에 강건한 적응 MIMO-OFDM 시스템)

  • Kim, Hyun-Dong;Choe, Sang-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7A
    • /
    • pp.762-769
    • /
    • 2007
  • Adaptive MIMO-OFDM (Orthogonal Frequency Division Multiplexing) system adaptively changes modulation scheme depending on feedback channel state information (CSI). The CSI feedback channel which is the reverse link channel has multiple symbol delays including propagation delay, processing delay, frame delay, etc. The unreliable CSI due to feedback delay degrades adaptive modulation system performance. This paper compares the MSE and data capacity with respect to delay and channel signal to noise ratio for the two multi-step channel prediction schemes, CTSBP and BTSBP, such that robust adaptive SISO-OFDM/MIMO-OFDM is designed over severe mobile multipath channel conditions. This paper presents an interpolation method to reduce feedback overhead for adaptive MIMO-OFDM and shows MSE with respect to interpolation interval.

An Optimal Strategy of 3G Mobile Handset Distribution by 3-Person Game (3자간게임모형에 의한 3G 이동통신단말기의 치적유통전략)

  • Joo, Young-Jin;Moon, Hyoung-Don
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.4
    • /
    • pp.185-204
    • /
    • 2009
  • The USIM(universal subscriber identity module)-unlock introducing in July 1, 2008 might be led to a significant change that mobile service provider's dominance is considerably dispersed to the handset manufacturer and distributor. Under USIM-unlock environment, mobile service provider, handset manufacturer, and distributor have to make their decisions on their handset distribution channel strategies: the closed distribution channel strategy or the open distribution channel strategy. The change of distribution channel strategy between members in distribution channel can be understood as a matter of strategy choice, and we have developed a theoretical model and analyzed how to make a decision for the member's optimal distribution strategy based on 3-person game model between members of mobile phone distribution channel, under both of '1 subscriber-1 handset' and '1 subscriber-multiple handset' assumptions. Under '1 subscriber-1 handset' assumption, the closed strategy controlled by mobile service provider is all players' optimal solution because the maximum size of the mobile phone market is limited by subscribers. But, as total expected profit by the handset and distribution subsides is a deficit, mobile service provider have to choose the open strategy and consider the conversion to MNO(mobile network operator). Under '1 subscriber-multiple handset' assumption, mobile service provider is trying to find the way how to lock-in its service and mobile phone and how to maximize ARPU(average revenue per unit), while handset manufacturer and distributor have to look for the way how to maximize the mobile phone market using their own marketing efforts, because it is expected that total mobile handset demand for the open market is bigger than demand for the closed market under '1 subscriber-multiple handset' assumption.

Performance Analysis of Coordinated Random Beamforming Technique in Multi-cell Environments

  • Lee, Jong-Min;Jung, Bang-Chul
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.4
    • /
    • pp.393-398
    • /
    • 2010
  • For multi-cell environments, coordinated random beamforming technique in multiuser MIMO(multiple-input multiple-output) broadcast channel is considered. In order to mitigate severe interference at receivers, the multi-cell environments might require complex transmitter and receiver design because the scheduler decision based on full channel state information (CSI) in one cell must be intertwined with decision made by other cells' CSI. With limited CSI, however, this paper considers a scheme of randomizing transmitters' beamforming but being coordinated with other cell transmitters. The transmitters in each cell share random beamforming patterns and schedule data transmission within coherent scheduling period. The corandomized beams allow the users to be selected with the highest SINRs even in multi-cell environments. We analyze the performance of the proposed scheme. And numerical results show that the scheme achieves better performance than the conventional random beamforming when applying to multi-cell environments.

A Study on the Physical-Layer Network Coding in a Two-Way Relay Network with Multiple Antennas (다중 안테나 기반 양방향 중계 네트워크를 위한 물리계층 네트워크 코딩에 관한 연구)

  • Lim, Hyeonwoo;Ban, Tae-Won;Jung, Bang Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.54-56
    • /
    • 2015
  • In this paper, we investigate a physical-layer network coding (PNC) in a two-way relay channel (TWRC) where two sources send and receive data with each other by help of a relay node with multiple antennas. We focus on the multiple-access phase of the TWRC in this paper. It is assumed that the source nodes do not know the wireless channel and the wireless channel independently varies in time, that is, fast fading environments. At the relay node, the channel is assumed to be perfectly known. The relay node utilizes the channel sate information and applies maximum likelihood ratio for detecting received signals. Through extensive simulations, it is shown that a bit error rate (BER) performance becomes improved as the number of antennas at the relay node increases.

  • PDF

A Beamformer Construction Method Via Partial Feedback of Channel State Information of MIMO Systems (다중 입출력 시스템의 부분적 채널 정보 궤환을 통한 빔포머 형성 방안)

  • Kim, Yoonsoo;Sung, Wonjin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.26-33
    • /
    • 2014
  • For wireless communication systems of (and beyond) LTE-Advanced, multiple-input multiple-output (MIMO) with an increased number of antennas will be utilized for system throughput improvement. When using such an increased number of antenna, an excessive amount of overhead in channel state information (CSI) feedback can be a serious problem. In this paper, we propose methods which reduce the CSI feedback overhead, particularly including application strategies for multi-rank transmission targeted for two or more reception antennas. To reduce the information which is instantaneously transmitted from the reception node to the transmission node, we present a beamforming method utilizing singular value decomposition (SVD) based on channel estimation of partitioned antenna arrays. Since the SVDs for partial matrices of the channel may lose the characteristics of the original unpartitioned matrix, we explain an appropriate scheme to cope with this problem.

Multiple Differential Feedback Detection of M-ary DPSK Signal in Shadowed Rician Fading Channel (쉐도우 라이시안 페이딩 채널에서 M-ary DPSK 신호의 다중 차동 궤환 검파)

  • 박문수;김환용
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.1
    • /
    • pp.61-70
    • /
    • 1996
  • M-ary differential phase shift keying(DPSK)is a bandwidth efficient digital modulation technique and recently has attracted increased attention in mobile satellite communication application where the available radio bandwidth is limited. Coherent detection offers good BER performance in AWGN channel. However, it requires long acquisition times in fading environment. In this paper, we analyze the BER performance of M-ary DPSK signal using the Multiple Differ- ential Feedback Detection(MDFD) technique in Rician fading and shadowed Rician fading channel. MDFD is an efficient scheme to decrease the performance gap between differential and coherent reception by increasing the complexity of the conventional differential receiver to some extent. Compared to the multiple symbol maximum likelihood detection technique, the multiple differential feedback detection technique has a much simpler structure for hardware implementation. Espe- cially, this technique has application to land mobile satellite channel which can vary in time and space between AWGN and rapidly fading channel.

  • PDF