• Title/Summary/Keyword: multiple addition

Search Result 3,838, Processing Time 0.032 seconds

Efficient Topic Modeling by Mapping Global and Local Topics (전역 토픽의 지역 매핑을 통한 효율적 토픽 모델링 방안)

  • Choi, Hochang;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.69-94
    • /
    • 2017
  • Recently, increase of demand for big data analysis has been driving the vigorous development of related technologies and tools. In addition, development of IT and increased penetration rate of smart devices are producing a large amount of data. According to this phenomenon, data analysis technology is rapidly becoming popular. Also, attempts to acquire insights through data analysis have been continuously increasing. It means that the big data analysis will be more important in various industries for the foreseeable future. Big data analysis is generally performed by a small number of experts and delivered to each demander of analysis. However, increase of interest about big data analysis arouses activation of computer programming education and development of many programs for data analysis. Accordingly, the entry barriers of big data analysis are gradually lowering and data analysis technology being spread out. As the result, big data analysis is expected to be performed by demanders of analysis themselves. Along with this, interest about various unstructured data is continually increasing. Especially, a lot of attention is focused on using text data. Emergence of new platforms and techniques using the web bring about mass production of text data and active attempt to analyze text data. Furthermore, result of text analysis has been utilized in various fields. Text mining is a concept that embraces various theories and techniques for text analysis. Many text mining techniques are utilized in this field for various research purposes, topic modeling is one of the most widely used and studied. Topic modeling is a technique that extracts the major issues from a lot of documents, identifies the documents that correspond to each issue and provides identified documents as a cluster. It is evaluated as a very useful technique in that reflect the semantic elements of the document. Traditional topic modeling is based on the distribution of key terms across the entire document. Thus, it is essential to analyze the entire document at once to identify topic of each document. This condition causes a long time in analysis process when topic modeling is applied to a lot of documents. In addition, it has a scalability problem that is an exponential increase in the processing time with the increase of analysis objects. This problem is particularly noticeable when the documents are distributed across multiple systems or regions. To overcome these problems, divide and conquer approach can be applied to topic modeling. It means dividing a large number of documents into sub-units and deriving topics through repetition of topic modeling to each unit. This method can be used for topic modeling on a large number of documents with limited system resources, and can improve processing speed of topic modeling. It also can significantly reduce analysis time and cost through ability to analyze documents in each location or place without combining analysis object documents. However, despite many advantages, this method has two major problems. First, the relationship between local topics derived from each unit and global topics derived from entire document is unclear. It means that in each document, local topics can be identified, but global topics cannot be identified. Second, a method for measuring the accuracy of the proposed methodology should be established. That is to say, assuming that global topic is ideal answer, the difference in a local topic on a global topic needs to be measured. By those difficulties, the study in this method is not performed sufficiently, compare with other studies dealing with topic modeling. In this paper, we propose a topic modeling approach to solve the above two problems. First of all, we divide the entire document cluster(Global set) into sub-clusters(Local set), and generate the reduced entire document cluster(RGS, Reduced global set) that consist of delegated documents extracted from each local set. We try to solve the first problem by mapping RGS topics and local topics. Along with this, we verify the accuracy of the proposed methodology by detecting documents, whether to be discerned as the same topic at result of global and local set. Using 24,000 news articles, we conduct experiments to evaluate practical applicability of the proposed methodology. In addition, through additional experiment, we confirmed that the proposed methodology can provide similar results to the entire topic modeling. We also proposed a reasonable method for comparing the result of both methods.

Measuring the Public Service Quality Using Process Mining: Focusing on N City's Building Licensing Complaint Service (프로세스 마이닝을 이용한 공공서비스의 품질 측정: N시의 건축 인허가 민원 서비스를 중심으로)

  • Lee, Jung Seung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.35-52
    • /
    • 2019
  • As public services are provided in various forms, including e-government, the level of public demand for public service quality is increasing. Although continuous measurement and improvement of the quality of public services is needed to improve the quality of public services, traditional surveys are costly and time-consuming and have limitations. Therefore, there is a need for an analytical technique that can measure the quality of public services quickly and accurately at any time based on the data generated from public services. In this study, we analyzed the quality of public services based on data using process mining techniques for civil licensing services in N city. It is because the N city's building license complaint service can secure data necessary for analysis and can be spread to other institutions through public service quality management. This study conducted process mining on a total of 3678 building license complaint services in N city for two years from January 2014, and identified process maps and departments with high frequency and long processing time. According to the analysis results, there was a case where a department was crowded or relatively few at a certain point in time. In addition, there was a reasonable doubt that the increase in the number of complaints would increase the time required to complete the complaints. According to the analysis results, the time required to complete the complaint was varied from the same day to a year and 146 days. The cumulative frequency of the top four departments of the Sewage Treatment Division, the Waterworks Division, the Urban Design Division, and the Green Growth Division exceeded 50% and the cumulative frequency of the top nine departments exceeded 70%. Higher departments were limited and there was a great deal of unbalanced load among departments. Most complaint services have a variety of different patterns of processes. Research shows that the number of 'complementary' decisions has the greatest impact on the length of a complaint. This is interpreted as a lengthy period until the completion of the entire complaint is required because the 'complement' decision requires a physical period in which the complainant supplements and submits the documents again. In order to solve these problems, it is possible to drastically reduce the overall processing time of the complaints by preparing thoroughly before the filing of the complaints or in the preparation of the complaints, or the 'complementary' decision of other complaints. By clarifying and disclosing the cause and solution of one of the important data in the system, it helps the complainant to prepare in advance and convinces that the documents prepared by the public information will be passed. The transparency of complaints can be sufficiently predictable. Documents prepared by pre-disclosed information are likely to be processed without problems, which not only shortens the processing period but also improves work efficiency by eliminating the need for renegotiation or multiple tasks from the point of view of the processor. The results of this study can be used to find departments with high burdens of civil complaints at certain points of time and to flexibly manage the workforce allocation between departments. In addition, as a result of analyzing the pattern of the departments participating in the consultation by the characteristics of the complaints, it is possible to use it for automation or recommendation when requesting the consultation department. In addition, by using various data generated during the complaint process and using machine learning techniques, the pattern of the complaint process can be found. It can be used for automation / intelligence of civil complaint processing by making this algorithm and applying it to the system. This study is expected to be used to suggest future public service quality improvement through process mining analysis on civil service.

Optimization of Multiclass Support Vector Machine using Genetic Algorithm: Application to the Prediction of Corporate Credit Rating (유전자 알고리즘을 이용한 다분류 SVM의 최적화: 기업신용등급 예측에의 응용)

  • Ahn, Hyunchul
    • Information Systems Review
    • /
    • v.16 no.3
    • /
    • pp.161-177
    • /
    • 2014
  • Corporate credit rating assessment consists of complicated processes in which various factors describing a company are taken into consideration. Such assessment is known to be very expensive since domain experts should be employed to assess the ratings. As a result, the data-driven corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has received considerable attention from researchers and practitioners. In particular, statistical methods such as multiple discriminant analysis (MDA) and multinomial logistic regression analysis (MLOGIT), and AI methods including case-based reasoning (CBR), artificial neural network (ANN), and multiclass support vector machine (MSVM) have been applied to corporate credit rating.2) Among them, MSVM has recently become popular because of its robustness and high prediction accuracy. In this study, we propose a novel optimized MSVM model, and appy it to corporate credit rating prediction in order to enhance the accuracy. Our model, named 'GAMSVM (Genetic Algorithm-optimized Multiclass Support Vector Machine),' is designed to simultaneously optimize the kernel parameters and the feature subset selection. Prior studies like Lorena and de Carvalho (2008), and Chatterjee (2013) show that proper kernel parameters may improve the performance of MSVMs. Also, the results from the studies such as Shieh and Yang (2008) and Chatterjee (2013) imply that appropriate feature selection may lead to higher prediction accuracy. Based on these prior studies, we propose to apply GAMSVM to corporate credit rating prediction. As a tool for optimizing the kernel parameters and the feature subset selection, we suggest genetic algorithm (GA). GA is known as an efficient and effective search method that attempts to simulate the biological evolution phenomenon. By applying genetic operations such as selection, crossover, and mutation, it is designed to gradually improve the search results. Especially, mutation operator prevents GA from falling into the local optima, thus we can find the globally optimal or near-optimal solution using it. GA has popularly been applied to search optimal parameters or feature subset selections of AI techniques including MSVM. With these reasons, we also adopt GA as an optimization tool. To empirically validate the usefulness of GAMSVM, we applied it to a real-world case of credit rating in Korea. Our application is in bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. The experimental dataset was collected from a large credit rating company in South Korea. It contained 39 financial ratios of 1,295 companies in the manufacturing industry, and their credit ratings. Using various statistical methods including the one-way ANOVA and the stepwise MDA, we selected 14 financial ratios as the candidate independent variables. The dependent variable, i.e. credit rating, was labeled as four classes: 1(A1); 2(A2); 3(A3); 4(B and C). 80 percent of total data for each class was used for training, and remaining 20 percent was used for validation. And, to overcome small sample size, we applied five-fold cross validation to our dataset. In order to examine the competitiveness of the proposed model, we also experimented several comparative models including MDA, MLOGIT, CBR, ANN and MSVM. In case of MSVM, we adopted One-Against-One (OAO) and DAGSVM (Directed Acyclic Graph SVM) approaches because they are known to be the most accurate approaches among various MSVM approaches. GAMSVM was implemented using LIBSVM-an open-source software, and Evolver 5.5-a commercial software enables GA. Other comparative models were experimented using various statistical and AI packages such as SPSS for Windows, Neuroshell, and Microsoft Excel VBA (Visual Basic for Applications). Experimental results showed that the proposed model-GAMSVM-outperformed all the competitive models. In addition, the model was found to use less independent variables, but to show higher accuracy. In our experiments, five variables such as X7 (total debt), X9 (sales per employee), X13 (years after founded), X15 (accumulated earning to total asset), and X39 (the index related to the cash flows from operating activity) were found to be the most important factors in predicting the corporate credit ratings. However, the values of the finally selected kernel parameters were found to be almost same among the data subsets. To examine whether the predictive performance of GAMSVM was significantly greater than those of other models, we used the McNemar test. As a result, we found that GAMSVM was better than MDA, MLOGIT, CBR, and ANN at the 1% significance level, and better than OAO and DAGSVM at the 5% significance level.

A study on the factors to affect the career success among workers with disabilities (지체장애근로자의 직업성공 요인에 관한 연구)

  • Lee, Dal-Yob
    • 한국사회복지학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.185-216
    • /
    • 2003
  • This study was aimed at investigating important factors influencing career success among regular workers. The current researcher scrutinized the degree to which variables and factors affect the career success and occupational turnover rates of the research participants. At the same tune, two hypothetical path models established by the researcher were examined using linear multiple regression methods and the LISREL. After examining the differences among the factors of career success, a comparison was made between the disabled worker group and the non-disabled worker group. A questionnaire using the 5-point Likert scale was distributed to a group of 374 workers with disabilities and 463 workers without disabilities. For the data analysis purpose, the structural equation model, factor analysis, correlation analysis, and multiple regression analysis were carried out. The results of this study ran be summarized as follows. First, the results of factor analysis showed important categories of conceptual themes of career success. The initial conceptual factor model did not accord with the empirical one. A three-factorial model revealed categories of personal, family, and organizational factor respectively. The personal factor was composed of the self-esteem and self-efficiency. The family factor was consisted of the multi-roles stress and the number of children. Finally, the organizational factor was composed of the capacity for utilizing resources, networking, and the frequency of mentoring. In addition, the total 10 sub areas of career success were divided by two important aspects; the subjective career success and the objective career success. Second, both research participant groups seemed to be influenced by their occupational types. However, all predictive variables excluding the wage rate and the average length of work years had significant impact on job success for the disabled work group, while all the variables excluding the frequency of advice and length of working years had significant impact on job success for the non-disabled worker group. Third, the turnover rate was significantly influenced by the age and the experience of turnover of the research participants. However, the number of co-workers was the strongest predictive variable for the worker group with disabilities, but the occupation choice variable for the worker group without disabilities. For the disabled worker group, the turnover rate was differently influenced by the type of occupation, the length of working years, while multi-role stress and the average working years at the time of turnover for the worker group without disabilities. Fifth, as a result of verifying the hypothetical path model, it showed that the first model was somewhat proper and could predict the career success on both research participant groups. In the second model, the Chi-square, the degree of freedom (($x^2=64.950$, df=61, P=0.341), and the adjusted Goodness of Fit Index (AGFI) were .964, and the Comparative Fit Index (CFI) were .997, and the Root Mean Squared Residual (RMR) was respectively. .038. The model was best fitted and could predict the career success more highly because the goodness of fit index in the whole models was within the allowed range. In conclusion, the following research implications can be suggested. First, the occupational type of research participants was one of the most important variables to predict the career success for both research participant groups. It means that people with disabilities require human development services including education. They need to improve themselves in this knowledge-based society. Furthermore, for maintaining the career success, people with disabilities should be approached by considering the subjective career success aspects including wages and the promotion opportunities than the objective career success aspects.

  • PDF

Analysis of Success Cases of InsurTech and Digital Insurance Platform Based on Artificial Intelligence Technologies: Focused on Ping An Insurance Group Ltd. in China (인공지능 기술 기반 인슈어테크와 디지털보험플랫폼 성공사례 분석: 중국 평안보험그룹을 중심으로)

  • Lee, JaeWon;Oh, SangJin
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.71-90
    • /
    • 2020
  • Recently, the global insurance industry is rapidly developing digital transformation through the use of artificial intelligence technologies such as machine learning, natural language processing, and deep learning. As a result, more and more foreign insurers have achieved the success of artificial intelligence technology-based InsurTech and platform business, and Ping An Insurance Group Ltd., China's largest private company, is leading China's global fourth industrial revolution with remarkable achievements in InsurTech and Digital Platform as a result of its constant innovation, using 'finance and technology' and 'finance and ecosystem' as keywords for companies. In response, this study analyzed the InsurTech and platform business activities of Ping An Insurance Group Ltd. through the ser-M analysis model to provide strategic implications for revitalizing AI technology-based businesses of domestic insurers. The ser-M analysis model has been studied so that the vision and leadership of the CEO, the historical environment of the enterprise, the utilization of various resources, and the unique mechanism relationships can be interpreted in an integrated manner as a frame that can be interpreted in terms of the subject, environment, resource and mechanism. As a result of the case analysis, Ping An Insurance Group Ltd. has achieved cost reduction and customer service development by digitally innovating its entire business area such as sales, underwriting, claims, and loan service by utilizing core artificial intelligence technologies such as facial, voice, and facial expression recognition. In addition, "online data in China" and "the vast offline data and insights accumulated by the company" were combined with new technologies such as artificial intelligence and big data analysis to build a digital platform that integrates financial services and digital service businesses. Ping An Insurance Group Ltd. challenged constant innovation, and as of 2019, sales reached $155 billion, ranking seventh among all companies in the Global 2000 rankings selected by Forbes Magazine. Analyzing the background of the success of Ping An Insurance Group Ltd. from the perspective of ser-M, founder Mammingz quickly captured the development of digital technology, market competition and changes in population structure in the era of the fourth industrial revolution, and established a new vision and displayed an agile leadership of digital technology-focused. Based on the strong leadership led by the founder in response to environmental changes, the company has successfully led InsurTech and Platform Business through innovation of internal resources such as investment in artificial intelligence technology, securing excellent professionals, and strengthening big data capabilities, combining external absorption capabilities, and strategic alliances among various industries. Through this success story analysis of Ping An Insurance Group Ltd., the following implications can be given to domestic insurance companies that are preparing for digital transformation. First, CEOs of domestic companies also need to recognize the paradigm shift in industry due to the change in digital technology and quickly arm themselves with digital technology-oriented leadership to spearhead the digital transformation of enterprises. Second, the Korean government should urgently overhaul related laws and systems to further promote the use of data between different industries and provide drastic support such as deregulation, tax benefits and platform provision to help the domestic insurance industry secure global competitiveness. Third, Korean companies also need to make bolder investments in the development of artificial intelligence technology so that systematic securing of internal and external data, training of technical personnel, and patent applications can be expanded, and digital platforms should be quickly established so that diverse customer experiences can be integrated through learned artificial intelligence technology. Finally, since there may be limitations to generalization through a single case of an overseas insurance company, I hope that in the future, more extensive research will be conducted on various management strategies related to artificial intelligence technology by analyzing cases of multiple industries or multiple companies or conducting empirical research.

Studies on the Mechanical Properties of Weathered Granitic Soil -On the Elements of Shear Strength and Hardness- (화강암질풍화토(花崗岩質風化土)의 역학적(力學的) 성질(性質)에 관(關)한 연구(硏究) -전단강도(剪斷强度)의 영향요소(影響要素)와 견밀도(堅密度)에 대(對)하여-)

  • Cho, Hi Doo
    • Journal of Korean Society of Forest Science
    • /
    • v.66 no.1
    • /
    • pp.16-36
    • /
    • 1984
  • It is very important in forestry to study the shear strength of weathered granitic soil, because the soil covers 66% of our country, and because the majority of land slides have been occured in the soil. In general, the causes of land slide can be classified both the external and internal factors. The external factors are known as vegetations, geography and climate, but internal factors are known as engineering properties originated from parent rocks and weathering. Soil engineering properties are controlled by the skeleton structure, texture, consistency, cohesion, permeability, water content, mineral components, porosity and density etc. of soils. And the effects of these internal factors on sliding down summarize as resistance, shear strength, against silding of soil mass. Shear strength basically depends upon effective stress, kinds of soils, density (void ratio), water content, the structure and arrangement of soil particles, among the properties. But these elements of shear strength work not all alone, but together. The purpose of this thesis is to clarify the characteristics of shear strength and the related elements, such as water content ($w_o$), void ratio($e_o$), dry density (${\gamma}_d$) and specific gravity ($G_s$), and the interrelationship among related elements in order to decide the dominant element chiefly influencing on shear strength in natural/undisturbed state of weathered granitic soil, in addition to the characteristics of soil hardness of weathered granitic soil and root distribution of Pinus rigida Mill and Pinus rigida ${\times}$ taeda planted in erosion-controlled lands. For the characteristics of shear strength of weathered granitic soil and the related elements of shear strength, three sites were selected from Kwangju district. The outlines of sampling sites in the district were: average specific gravity, 2.63 ~ 2.79; average natural water content, 24.3 ~ 28.3%; average dry density, $1.31{\sim}1.43g/cm^3$, average void ratio, 0.93 ~ 1.001 ; cohesion, $ 0.2{\sim}0.75kg/cm^2$ ; angle of internal friction, $29^{\circ}{\sim}45^{\circ}$ ; soil texture, SL. The shear strength of the soil in different sites was measured by a direct shear apparatus (type B; shear box size, $62.5{\times}20mm$; ${\sigma}$, $1.434kg/cm^2$; speed, 1/100mm/min.). For the related element analyses, water content was moderated through a series of drainage experiments with 4 levels of drainage period, specific gravity was measured by KS F 308, analysis of particle size distribution, by KS F 2302 and soil samples were dried at $110{\pm}5^{\circ}C$ for more than 12 hours in dry oven. Soil hardness represents physical properties, such as particle size distribution, porosity, bulk density and water content of soil, and test of the hardness by soil hardness tester is the simplest approach and totally indicative method to grasp the mechanical properties of soil. It is important to understand the mechanical properties of soil as well as the chemical in order to realize the fundamental phenomena in the growth and the distribution of tree roots. The writer intended to study the correlation between the soil hardness and the distribution of tree roots of Pinus rigida Mill. planted in 1966 and Pinus rigida ${\times}$ taeda in 199 to 1960 in the denuded forest lands with and after several erosion control works. The soil texture of the sites investigated was SL originated from weathered granitic soil. The former is situated at Py$\ddot{o}$ngchangri, Ky$\ddot{o}$m-my$\ddot{o}$n, Kogs$\ddot{o}$ng-gun, Ch$\ddot{o}$llanam-do (3.63 ha; slope, $17^{\circ}{\sim}41^{\circ}$ soil depth, thin or medium; humidity, dry or optimum; height, 5.66/3.73 ~ 7.63 m; D.B.H., 9.7/8.00 ~ 12.00 cm) and the Latter at changun-long Kwangju-shi (3.50 ha; slope, $12^{\circ}{\sim}23^{\circ}$; soil depth, thin; humidity, dry; height, 10.47/7.3 ~ 12.79 m; D.B.H., 16.94/14.3 ~ 19.4 cm).The sampling areas were 24quadrats ($10m{\times}10m$) in the former area and 12 in the latter expanding from summit to foot. Each sampling trees for hardness test and investigation of root distribution were selected by purposive selection and soil profiles of these trees were made at the downward distance of 50 cm from the trees, at each quadrat. Soil layers of the profile were separated by the distance of 10 cm from the surface (layer I, II, ... ...). Soil hardness was measured with Yamanaka soil hardness tester and indicated as indicated soil hardness at the different soil layers. The distribution of tree root number per unit area in different soil depth was investigated, and the relationship between the soil hardness and the number of tree roots was discussed. The results obtained from the experiments are summarized as follows. 1. Analyses of simple relationship between shear strength and elements of shear strength, water content ($w_o$), void ratio ($e_o$), dry density (${\gamma}_d$) and specific gravity ($G_s$). 1) Negative correlation coefficients were recognized between shear strength and water content. and shear strength and void ratio. 2) Positive correlation coefficients were recognized between shear strength and dry density. 3) The correlation coefficients between shear strength and specific gravity were not significant. 2. Analyses of partial and multiple correlation coefficients between shear strength and the related elements: 1) From the analyses of the partial correlation coefficients among water content ($x_1$), void ratio ($x_2$), and dry density ($x_3$), the direct effect of the water content on shear strength was the highest, and effect on shear strength was in order of void ratio and dry density. Similar trend was recognized from the results of multiple correlation coefficient analyses. 2) Multiple linear regression equations derived from two independent variables, water content ($x_1$ and dry density ($x_2$) were found to be ineffective in estimating shear strength ($\hat{Y}$). However, the simple linear regression equations with an independent variable, water content (x) were highly efficient to estimate shear strength ($\hat{Y}$) with relatively high fitness. 3. A relationship between soil hardness and the distribution of root number: 1) The soil hardness increased proportionally to the soil depth. Negative correlation coefficients were recognized between indicated soil hardness and the number of tree roots in both plantations. 2) The majority of tree roots of Pinus rigida Mill and Pinus rigida ${\times}$ taeda planted in erosion-controlled lands distributed at 20 cm deep from the surface. 3) Simple linear regression equations were derived from indicated hardness (x) and the number of tree roots (Y) to estimate root numbers in both plantations.

  • PDF

A Study on Startups' Dependence on Business Incubation Centers (창업보육서비스에 따른 입주기업의 창업보육센터 의존도에 관한 연구)

  • Park, JaeSung;Lee, Chul;Kim, JaeJon
    • Korean small business review
    • /
    • v.31 no.2
    • /
    • pp.103-120
    • /
    • 2009
  • As business incubation centers (BICs) have been operating for more than 10 years in Korea, many early stage startups tend to use the services provided by the incubating centers. BICs in Korea have accumulated the knowledge and experience in the past ten years and their services have been considerably improved. The business incubating service has three facets : (1) business infrastructure service, (2) direct service, and (3) indirect service. The mission of BICs is to provide the early stage entrepreneurs with the incubating service in a limited period time to help them grow strong enough to survive the fierce competition after graduating from the incubation. However, the incubating services sometimes fail to foster the independence of new startup companies, and raise the dependence of many companies on BICs. Thus, the dependence on BICs is a very important factor to understand the survival of the incubated startup companies after graduation from BICs. The purpose of this study is to identify the main factors that influence the firm's dependence on BICs and to characterize the relationships among the identified factors. The business incubating service is a core construct of this study. It includes various activities and resources, such as offering the physical facilities, legal service, and connecting them with outside organizations. These services are extensive and take various forms. They are provided by BICs directly or indirectly. Past studies have identified various incubating services and classify them in different ways. Based on the past studies, we classify the business incubating service into three categories as mentioned above : (1) business infrastructure support, (2) direct support, and (3) networking support. The business infrastructure support is to provide the essential resources to start the business, such as physical facilities. The direct support is to offer the business resources available in the BICs, such as human, technical, and administrational resources. Finally, the indirect service was to support the resource in the outside of business incubation center. Dependence is generally defined as the degree to which a client firm needs the resources provided by the service provider in order to achieve its goals. Dependence is generated when a firm recognizes the benefits of interacting with its counterpart. Hence, the more positive outcomes a firm derives from its relationship with the partner, the more dependent on the partner the firm must inevitably become. In business incubating, as a resident firm is incubated in longer period, we can predict that her dependence on BICs would be stronger. In order to foster the independence of the incubated firms, BICs have to be able to manipulate the provision of their services to control the firms' dependence on BICs. Based on the above discussion, the research model for relationships between dependence and its affecting factors was developed. We surveyed the companies residing in BICs to test our research model. The instrument of our study was modified, in part, on the basis of previous relevant studies. For the purposes of testing reliability and validity, preliminary testing was conducted with firms that were residing in BICs and incubated by the BICs in the region of Gwangju and Jeonnam. The questionnaire was modified in accordance with the pre-test feedback. We mailed to all of the firms that had been incubated by the BICs with the help of business incubating managers of each BIC. The survey was conducted over a three week period. Gifts (of approximately ₩10,000 value) were offered to all actively participating respondents. The incubating period was reported by the business incubating managers, and it was transformed using natural logarithms. A total of 180 firms participated in the survey. However, we excluded 4 cases due to a lack of consistency using reversed items in the answers of the companies, and 176 cases were used for the analysis. We acknowledge that 176 samples may not be sufficient to conduct regression analyses with 5 research variables in our study. Each variable was measured through multiple items. We conducted an exploratory factor analysis to assess their unidimensionality. In an effort to test the construct validity of the instruments, a principal component factor analysis was conducted with Varimax rotation. The items correspond well to each singular factor, demonstrating a high degree of convergent validity. As the factor loadings for a variable (or factor) are higher than the factor loadings for the other variables, the instrument's discriminant validity is shown to be clear. Each factor was extracted as expected, which explained 70.97, 66.321, and 52.97 percent, respectively, of the total variance each with eigen values greater than 1.000. The internal consistency reliability of the variables was evaluated by computing Cronbach's alphas. The Cronbach's alpha values of the variables, which ranged from 0.717 to 0.950, were all securely over 0.700, which is satisfactory. The reliability and validity of the research variables are all, therefore, considered acceptable. The effects of dependence were assessed using a regression analysis. The Pearson correlations were calculated for the variables, measured by interval or ratio scales. Potential multicollinearity among the antecedents was evaluated prior to the multiple regression analysis, as some of the variables were significantly correlated with others (e.g., direct service and indirect service). Although several variables show the evidence of significant correlations, their tolerance values range between 0.334 and 0.613, thereby demonstrating that multicollinearity is not a likely threat to the parameter estimates. Checking some basic assumptions for the regression analyses, we decided to conduct multiple regression analyses and moderated regression analyses to test the given hypotheses. The results of the regression analyses indicate that the regression model is significant at p < 0.001 (F = 44.260), and that the predictors of the research model explain 42.6 percent of the total variance. Hypotheses 1, 2, and 3 address the relationships between the dependence of the incubated firms and the business incubating services. Business infrastructure service, direct service, and indirect service are all significantly related with dependence (β = 0.300, p < 0.001; β = 0.230, p < 0.001; β = 0.226, p < 0.001), thus supporting Hypotheses 1, 2, and 3. When the incubating period is the moderator and dependence is the dependent variable, the addition of the interaction terms with the antecedents to the regression equation yielded a significant increase in R2 (F change = 2.789, p < 0.05). In particular, direct service and indirect service exert different effects on dependence. Hence, the results support Hypotheses 5 and 6. This study provides several strategies and specific calls to action for BICs, based on our empirical findings. Business infrastructure service has more effect on the firm's dependence than the other two services. The introduction of an additional high charge rate for a graduated but allowed to stay in the BIC is a basic and legitimate condition for the BIC to control the firm's dependence. We detected the differential effects of direct and indirect services on the firm's dependence. The firms with long incubating period are more sensitive to indirect service positively, and more sensitive to direct service negatively, when assessing their levels of dependence. This implies that BICs must develop a strategy on the basis of a firm's incubating period. Last but not least, it would be valuable to discover other important variables that influence the firm's dependence in the future studies. Moreover, future studies to explain the independence of startup companies in BICs would also be valuable.

The Alignment Evaluation for Patient Positioning System(PPS) of Gamma Knife PerfexionTM (감마나이프 퍼펙션의 자동환자이송장치에 대한 정렬됨 평가)

  • Jin, Seong Jin;Kim, Gyeong Rip;Hur, Beong Ik
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.3
    • /
    • pp.203-209
    • /
    • 2020
  • The purpose of this study is to assess the mechanical stability and alignment of the patient positioning system (PPS) of Leksell Gamma Knife Perfexion(LGK PFX). The alignment of the PPS of the LGK PFX was evaluated through measurements of the deviation of the coincidence of the Radiological Focus Point(RFP) and the PPS Calibration Center Point(CCP) applying different weights on the couch(0, 50, 60, 70, 80, and 90 kg). In measurements, a service diode test tool with three diode detectors being used biannually at the time of the routine preventive maintenance was used. The test conducted with varying weights on the PPS using the service diode test tool measured the radial deviations for all three collimators 4, 8, and 16 mm and also for three different positions of the PPS. In order to evaluate the alignment of the PPS, the radial deviations of the correspondence of the radiation focus and the LGK calibration center point of multiple beams were averaged using the calibrated service diode test tool at three university hospitals in Busan and Gyeongnam. Looking at the center diode for all collimators 4, 8, and 16 mm without weight on the PPS, and examining the short and long diodes for the 4 mm collimator, the means of the validation difference, i.e., the radial deviation for the setting of 4, 8, and 16 mm collimators for the center diode were respectively measured to 0.058 ± 0.023, 0.079 ± 0.023, and 0.097 ± 0.049 mm, and when the 4 mm collimator was applied to the center diode, the short diode, and the long diode, the average of the radial deviation was respectively 0.058 ± 0.023, 0.078 ± 0.01 and 0.070 ± 0.023 mm. The average of the radial deviations when irradiating 8 and 16 mm collimators on short and long diodes without weight are measured to 0.07 ± 0.003(8 mm sd), 0.153 ± 0.002 mm(16 mm sd) and 0.031 ± 0.014(8 mm ld), 0.175 ± 0.01 mm(16 mm ld) respectively. When various weights of 50 to 90 kg are placed on the PPS, the average of radial deviation when irradiated to the center diode for 4, 8, and 16 mm is 0.061 ± 0.041 to 0.075 ± 0.015, 0.023 ± 0.004 to 0.034 ± 0.003, and 0.158 ± 0.08 to 0.17 ± 0.043 mm, respectively. In addition, in the same situation, when the short diode for 4, 8, and 16 mm was irradiated, the averages of radial deviations were 0.063 ± 0.024 to 0.07 ± 0.017, 0.037 ± 0.006 to 0.059 ± 0.001, and 0.154 ± 0.03 to 0.165 ± 0.07 mm, respectively. In addition, when irradiated on long diode for 4, 8, and 16 mm, the averages of radial deviations were measured to be 0.102 ± 0.029 to 0.124 ± 0.036, 0.035 ± 0.004 to 0.054 ± 0.02, and 0.183 ± 0.092 to 0.202 ± 0.012 mm, respectively. It was confirmed that all the verification results performed were in accordance with the manufacturer's allowable deviation criteria. It was found that weight dependence was negligible as a result of measuring the alignment according to various weights placed on the PPS that mimics the actual treatment environment. In particular, no further adjustment or recalibration of the PPS was required during the verification. It has been confirmed that the verification test of the PPS according to various weights is suitable for normal Quality Assurance of LGK PFX.

The Effects of Evaluation Attributes of Cultural Tourism Festivals on Satisfaction and Behavioral Intention (문화관광축제 방문객의 평가속성 만족과 행동의도에 관한 연구 - 2006 광주김치대축제를 중심으로 -)

  • Kim, Jung-Hoon
    • Journal of Global Scholars of Marketing Science
    • /
    • v.17 no.2
    • /
    • pp.55-73
    • /
    • 2007
  • Festivals are an indispensable feature of cultural tourism(Formica & Uysal, 1998). Cultural tourism festivals are increasingly being used as instruments promoting tourism and boosting the regional economy. So much research related to festivals is undertaken from a variety of perspectives. Plans to revisit a particular festival have been viewed as an important research topic both in academia and the tourism industry. Therefore festivals have frequently been leveled as cultural events. Cultural tourism festivals have become a crucial component in constituting the attractiveness of tourism destinations(Prentice, 2001). As a result, a considerable number of tourist studies have been carried out in diverse cultural tourism festivals(Backman et al., 1995; Crompton & Mckay, 1997; Park, 1998; Clawson & Knetch, 1996). Much of previous literature empirically shows the close linkage between tourist satisfaction and behavioral intention in festivals. The main objective of this study is to investigate the effects of evaluation attributes of cultural tourism festivals on satisfaction and behavioral intention. accomplish the research objective, to find out evaluation items of cultural tourism festivals through the literature study an empirical study. Using a varimax rotation with Kaiser normalization, the research obtained four factors in the 18 evaluation attributes of cultural tourism festivals. Some empirical studies have examined the relationship between behavioral intention and actual behavior. To understand between tourist satisfaction and behavioral intention, this study suggests five hypotheses and hypothesized model. In this study, the analysis is based on primary data collected from visitors who participated in '2006 Gwangju Kimchi Festival'. In total, 700 self-administered questionnaires were distributed and 561 usable questionnaires were obtained. Respondents were presented with the 18 satisfactions item on a scale from 1(strongly disagree) to 7(strongly agree). Dimensionality and stability of the scale were evaluated by a factor analysis with varimax rotation. Four factors emerged with eigenvalues greater than 1, which explained 66.40% of the total variance and Cronbach' alpha raging from 0.876 to 0.774. And four factors named: advertisement and guides, programs, food and souvenirs, and convenient facilities. To test and estimate the hypothesized model, a two-step approach with an initial measurement model and a subsequent structural model for Structural Equation Modeling was used. The AMOS 4.0 analysis package was used to conduct the analysis. In estimating the model, the maximum likelihood procedure was used.In this study Chi-square test is used, which is the most common model goodness-of-fit test. In addition, considering the literature about the Structural Equation Modeling, this study used, besides Chi-square test, more model fit indexes to determine the tangibility of the suggested model: goodness-of-fit index(GFI) and root mean square error of approximation(RMSEA) as absolute fit indexes; normed-fit index(NFI) and non-normed-fit index(NNFI) as incremental fit indexes. The results of T-test and ANOVAs revealed significant differences(0.05 level), therefore H1(Tourist Satisfaction level should be different from Demographic traits) are supported. According to the multiple Regressions analysis and AMOS, H2(Tourist Satisfaction positively influences on revisit intention), H3(Tourist Satisfaction positively influences on word of mouth), H4(Evaluation Attributes of cultural tourism festivals influences on Tourist Satisfaction), and H5(Tourist Satisfaction positively influences on Behavioral Intention) are also supported. As the conclusion of this study are as following: First, there were differences in satisfaction levels in accordance with the demographic information of visitors. Not all visitors had the same degree of satisfaction with their cultural tourism festival experience. Therefore it is necessary to understand the satisfaction of tourists if the experiences that are provided are to meet their expectations. So, in making festival plans, the organizer should consider the demographic variables in explaining and segmenting visitors to cultural tourism festival. Second, satisfaction with attributes of evaluation cultural tourism festivals had a significant direct impact on visitors' intention to revisit such festivals and the word of mouth publicity they shared. The results indicated that visitor satisfaction is a significant antecedent of their intention to revisit such festivals. Festival organizers should strive to forge long-term relationships with the visitors. In addition, it is also necessary to understand how the intention to revisit a festival changes over time and identify the critical satisfaction factors. Third, it is confirmed that behavioral intention was enhanced by satisfaction. The strong link between satisfaction and behavioral intentions of visitors areensured by high quality advertisement and guides, programs, food and souvenirs, and convenient facilities. Thus, examining revisit intention from a time viewpoint may be of a great significance for both practical and theoretical reasons. Additionally, festival organizers should give special attention to visitor satisfaction, as satisfied visitors are more likely to return sooner. The findings of this research have several practical implications for the festivals managers. The promotion of cultural festivals should be based on the understanding of tourist satisfaction for the long- term success of tourism. And this study can help managers carry out this task in a more informed and strategic manner by examining the effects of demographic traits on the level of tourist satisfaction and the behavioral intention. In other words, differentiated marketing strategies should be stressed and executed by relevant parties. The limitations of this study are as follows; the results of this study cannot be generalized to other cultural tourism festivals because we have not explored the many different kinds of festivals. A future study should be a comparative analysis of other festivals of different visitor segments. Also, further efforts should be directed toward developing more comprehensive temporal models that can explain behavioral intentions of tourists.

  • PDF

Corporate Default Prediction Model Using Deep Learning Time Series Algorithm, RNN and LSTM (딥러닝 시계열 알고리즘 적용한 기업부도예측모형 유용성 검증)

  • Cha, Sungjae;Kang, Jungseok
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.1-32
    • /
    • 2018
  • In addition to stakeholders including managers, employees, creditors, and investors of bankrupt companies, corporate defaults have a ripple effect on the local and national economy. Before the Asian financial crisis, the Korean government only analyzed SMEs and tried to improve the forecasting power of a default prediction model, rather than developing various corporate default models. As a result, even large corporations called 'chaebol enterprises' become bankrupt. Even after that, the analysis of past corporate defaults has been focused on specific variables, and when the government restructured immediately after the global financial crisis, they only focused on certain main variables such as 'debt ratio'. A multifaceted study of corporate default prediction models is essential to ensure diverse interests, to avoid situations like the 'Lehman Brothers Case' of the global financial crisis, to avoid total collapse in a single moment. The key variables used in corporate defaults vary over time. This is confirmed by Beaver (1967, 1968) and Altman's (1968) analysis that Deakins'(1972) study shows that the major factors affecting corporate failure have changed. In Grice's (2001) study, the importance of predictive variables was also found through Zmijewski's (1984) and Ohlson's (1980) models. However, the studies that have been carried out in the past use static models. Most of them do not consider the changes that occur in the course of time. Therefore, in order to construct consistent prediction models, it is necessary to compensate the time-dependent bias by means of a time series analysis algorithm reflecting dynamic change. Based on the global financial crisis, which has had a significant impact on Korea, this study is conducted using 10 years of annual corporate data from 2000 to 2009. Data are divided into training data, validation data, and test data respectively, and are divided into 7, 2, and 1 years respectively. In order to construct a consistent bankruptcy model in the flow of time change, we first train a time series deep learning algorithm model using the data before the financial crisis (2000~2006). The parameter tuning of the existing model and the deep learning time series algorithm is conducted with validation data including the financial crisis period (2007~2008). As a result, we construct a model that shows similar pattern to the results of the learning data and shows excellent prediction power. After that, each bankruptcy prediction model is restructured by integrating the learning data and validation data again (2000 ~ 2008), applying the optimal parameters as in the previous validation. Finally, each corporate default prediction model is evaluated and compared using test data (2009) based on the trained models over nine years. Then, the usefulness of the corporate default prediction model based on the deep learning time series algorithm is proved. In addition, by adding the Lasso regression analysis to the existing methods (multiple discriminant analysis, logit model) which select the variables, it is proved that the deep learning time series algorithm model based on the three bundles of variables is useful for robust corporate default prediction. The definition of bankruptcy used is the same as that of Lee (2015). Independent variables include financial information such as financial ratios used in previous studies. Multivariate discriminant analysis, logit model, and Lasso regression model are used to select the optimal variable group. The influence of the Multivariate discriminant analysis model proposed by Altman (1968), the Logit model proposed by Ohlson (1980), the non-time series machine learning algorithms, and the deep learning time series algorithms are compared. In the case of corporate data, there are limitations of 'nonlinear variables', 'multi-collinearity' of variables, and 'lack of data'. While the logit model is nonlinear, the Lasso regression model solves the multi-collinearity problem, and the deep learning time series algorithm using the variable data generation method complements the lack of data. Big Data Technology, a leading technology in the future, is moving from simple human analysis, to automated AI analysis, and finally towards future intertwined AI applications. Although the study of the corporate default prediction model using the time series algorithm is still in its early stages, deep learning algorithm is much faster than regression analysis at corporate default prediction modeling. Also, it is more effective on prediction power. Through the Fourth Industrial Revolution, the current government and other overseas governments are working hard to integrate the system in everyday life of their nation and society. Yet the field of deep learning time series research for the financial industry is still insufficient. This is an initial study on deep learning time series algorithm analysis of corporate defaults. Therefore it is hoped that it will be used as a comparative analysis data for non-specialists who start a study combining financial data and deep learning time series algorithm.