• Title/Summary/Keyword: multiple Regression analysis

Search Result 9,658, Processing Time 0.034 seconds

Study on the Annoyance Response in the Area Exposed by Road Traffic Noise and Railway Noise (도로교통소음과 철도소음 복합노출지역에서의 성가심 반응)

  • Ko, Joon-Hee;Chang, Seo-Il;Son, Jin-Hee;Lee, Kun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.2
    • /
    • pp.172-178
    • /
    • 2010
  • The multiple regression analysis and path analysis in each dominant area of noise source are conducted to analyze the relationship between dependent variables like annoyance and independent ones such as noise and non-noise factors. The multiple regression analysis shows that impact of noise factors is the highest to annoyance in dominant areas of road traffic and railway noise. Meanwhile, impact of non-noise factors such as sensitivity and satisfaction of environment on annoyance is also high in these areas. The path analysis result for multivariate analysis between various independent and dependent variables is similar to that of the multiple regression analysis. However, noise factor is the greatest factor influent on annoyance in the dominant areas of the combined noise, and relationship between annoyance and sensitivity is the highest in combined area exposed to road traffic noise and railway noise.

Risk Assesment for Large-scale Slopes Using Multiple Regression Analysis (다중회귀분석을 이용한 대규모 비탈면의 위험도 평가)

  • Lee, Jong-Gun;Chang, Buhm-Soo;Kim, Yong-Soo;Suk, Jae-Wook;Moon, Joon-Shik
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.99-106
    • /
    • 2013
  • In this study, the correlation of evaluation items and safety rating for 104 of large-scale slopes along the general national road was analyzed. And, we proposed the regression model to predict the safety rating using the multiple regressions analysis. As the result, it is shown that the evaluation items of slope angle, rainfall and groundwater have a low correlation with safety rating. Also, the regression model suggested by multiple regression analysis shows high predictive value, and it would be possible to apply if the evaluation items of excavation condition and groundwater (rainfall) are not clear.

Development of Energy Consumption Estimation Model Using Multiple Regression Analysis (다중회귀분석을 활용한 하수처리시설 에너지 소비량 예측모델 개발)

  • Shin, Won-Jae;Jung, Yong-Jun;Kim, Ye-Jin
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1443-1450
    • /
    • 2015
  • Wastewater treatment plant(WWTP) has been recognized as a high energy consuming plant. Usually many WWTPs has been operated in the excessive operation conditions in order to maintain stable wastewater treatment. The energy required at WWTPs consists of various subparts such as pumping, aeration, and office maintenance. For management of energy comes from process operation, it can be useful to operators to provide some information about energy variations according to the adjustment of operational variables. In this study, multiple regression analysis was used to establish an energy estimation model. The independent variables for estimation energy were selected among operational variables. The $R^2$ value in the regression analysis appeared 0.68, and performance of the electric power prediction model had less than ${\pm}5%$ error.

Evaluation of Cutting Characteristics Using Multiple Regression Analysis (다중회귀분석을 이용한 절삭특성 평가)

  • Lee Young Moon;Jang Seung Il;Jun Jeong Woon;Bae Hyun Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.20-25
    • /
    • 2004
  • Using the multiple regression analysis cutting forces of turning processes have been predicted based on the cutting conditions such as feed rate(f), depth of cut(d), and cutting velocity(v). The statistical inference of the equation was checked by ANOVA test. The validity of the proposed regression analysis was verified by two sets of cutting tests of 27 cutting conditions and the additional cutting tests of 18 cutting conditions. From the results of analytical and experimental studies, it was found that there was no significant difference between the measured and predicted cutting forces. Also, the shear and friction characteristics of turning processes were analyzed with predicted cutting forces.

COST PERFORMANCE PREDICTION FOR INTERNATIONAL CONSTRUCTION PROJECTS USING MULTIPLE REGRESSION ANALYSIS AND STRUCTURAL EQUATION MODEL: A COMPARATIVE STUDY

  • D.Y. Kim;S.H. Han;H. Kim;H. Park
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.653-661
    • /
    • 2007
  • Overseas construction projects tend to be more complex than domestic projects, being exposed to more external risks, such as politics, economy, society, and culture, as well as more internal risks from the project itself. It is crucial to have an early understanding of the project condition, in order to be well prepared in various phases of the project. This study compares a structural equation model and multiple regression analysis, in their capacity to predict cost performance of international construction projects. The structural equation model shows a more accurate prediction of cost performance than does regression analysis, due to its intrinsic capability of considering various cost factors in a systematic way.

  • PDF

A Study on the Influence of a Sewage Treatment Plant's Operational Parameters using the Multiple Regression Analysis Model

  • Lee, Seung-Pil;Min, Sang-Yun;Kim, Jin-Sik;Park, Jong-Un;Kim, Man-Soo
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • In this study, the influence of the control and operational parameters within a sewage treatment plant were reviewed by performing multiple regression analysis on the effluent quality of the sewage treatment. The data used for this review are based on the actual data from a sewage treatment plant using the media process within the year 2012. The prediction models of chemical oxygen demand ($COD_{Mn}$) and total nitrogen (T-N) within the effluent of the 2nd settling tank based on the multiple regression analysis yielded the prediction accuracy measurements of 0.93 and 0.84, respectively; and it was concluded that the model was accurately predicting the variances of the actual observed values. If the data on the energy spent on each operating condition can be collected, then the operating parameter that conserves energy without violating the effluent quality standards of COD and T-N can be determined using the regression model and the standardized regression coefficients. These results can provide appropriate operation guidelines to conserve energy to the operators at sewage treatment plants that consume a lot of energy.

Correlation Analysis of Water Quality According to Land Use Types of Reservoir Watershed (유역 토지이용과 저수지 수질의 상관관계 분석)

  • Youn, Dong-Koun;Chung, Sang-Ok
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.614-619
    • /
    • 2005
  • The object of this study was to presented regression equations for obtaining simply and quickly values of water quality items, BOD, COD, T-N, and T-P. Regression equations obtained to analyze relationships for water quality items to land use types in agricultural reservoir watersheds. In order to derive regression equations, a multiple linear regression analysis was used in this studying reservoirs. In this regression analysis, a independent values used land used types and dependent values used BOD, COD, T-N, T-P values in water quality items. The results showed that numbers of regression equation ranging above 0.90 in a multiple correlation coefficient (MCC) was not found, ranging from 0.70 to 0.90 in the MCC was 6, ranging from 0.40 to 0.70 in the MCC was 20, and ranging from 0.20 to 0.40 in the MCC was 4. The results of this study can be used as a basic information for evaluating simply and quickly water quality for proposing and designing steps in water quality policy.

  • PDF

Regional Low Flow Frequency Analysis Using Bayesian Multiple Regression (Bayesian 다중회귀분석을 이용한 저수량(Low flow) 지역 빈도분석)

  • Kim, Sang-Ug;Lee, Kil-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.3
    • /
    • pp.325-340
    • /
    • 2008
  • This study employs Bayesian multiple regression analysis using the ordinary least squares method for regional low flow frequency analysis. The parameter estimates using the Bayesian multiple regression analysis were compared to conventional analysis using the t-distribution. In these comparisons, the mean values from the t-distribution and the Bayesian analysis at each return period are not significantly different. However, the difference between upper and lower limits is remarkably reduced using the Bayesian multiple regression. Therefore, from the point of view of uncertainty analysis, Bayesian multiple regression analysis is more attractive than the conventional method based on a t-distribution because the low flow sample size at the site of interest is typically insufficient to perform low flow frequency analysis. Also, we performed low flow prediction, including confidence interval, at two ungauged catchments in the Nakdong River basin using the developed Bayesian multiple regression model. The Bayesian prediction proves effective to infer the low flow characteristic at the ungauged catchment.

Evaluation of Barley Bran Sauce Aroma by Multiple Regression Analysis

  • Choi, Ung-Kyu
    • Food Science and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.656-660
    • /
    • 2005
  • The relationship between the gas chromatographic (GC) patterns of sauce made of barley bran and ranked order in sensory analysis was investigated by multiple regression analysis (MRA). Most of the 42 barley bran sauce samples comprised about 34 peaks, in which the content of 9, 12-octadecanoic acid methyl ester was the highest, followed by those of 2-furanmethanol and 2-furancarboxaldehyde. It is difficult to estimate the aroma quality of barley bran sauce samples on the basis of only one peak. The 34 aroma compounds of the 42 samples were analyzed by an MRA model featuring six transformations. The most precise fit was calculated from the absolute value transformed with the root square of each peak, and the multiple determination coefficient showed that 91.6% of the variation in the sensory score could be explained on the basis of GC data.

Note on classification and regression tree analysis (분류와 회귀나무분석에 관한 소고)

  • 임용빈;오만숙
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.1
    • /
    • pp.152-161
    • /
    • 2002
  • The analysis of large data sets with hundreds of thousands observations and thousands of independent variables is a formidable computational task. A less parametric method, capable of identifying important independent variables and their interactions, is a tree structured approach to regression and classification. It gives a graphical and often illuminating way of looking at data in classification and regression problems. In this paper, we have reviewed and summarized tile methodology used to construct a tree, multiple trees and the sequential strategy for identifying active compounds in large chemical databases.