• Title/Summary/Keyword: multiple Regression

Search Result 13,405, Processing Time 0.035 seconds

Optimize OTDOA-based Positioning Accuracy by Utilizing Multiple Linear Regression Model under NB-IoT Technology (NB-IoT 기술에서 Multiple Linear Regression Model을 활용하여 OTDOA 기반 포지셔닝 정확도 최적화)

  • Pan, Yichen;Kim, Jaesoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.139-142
    • /
    • 2020
  • NB-IoT(Narrow Band Internet of Things) is an emerging LPWAN(Low Power Wide Area Network) radio technology. NB-IoT has many advantages like low power, low cost, and high coverage. However low bandwidth and low sampling rates also lead to poor positioning accuracy. This paper proposed a solution to optimize positioning accuracy under the OTDOA(Observed Time Difference of Arrival) approach by utilizing MLR(Multiple Linear Regression) models. Through the MLR model to predict the influence degree of weather(temperature, humidity, light intensity and air pressure) on the arrival time of signal transmission to improve the measurement accuracy. The improvement of measurement accuracy can greatly improve IoT applications based on NB-IoT.

  • PDF

An Incremental Regression Model for Time Series Data Prediction (시계열 데이터 예측을 위한 점진적인 회귀분석 모델)

  • Kim Sung-Hyun;Lee Yong-Mi;Jin Long;Seo Sung-Bo;Ryu Keun-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.23-26
    • /
    • 2006
  • 기존의 데이터 마이닝 예측 기법 중 회귀분석은 학습 단계에서 생성된 모델을 변경 없이 새로운 데이터에 적용하였다. 그러나 시계열 데이터에 모델 변경 없이 동일하게 적용하면 시간이 지남에 따라 정확도가 낮아지는 단점이 있다. 따라서 이 논문에서는 시간에 따라 변화하는 시계열데이터의 특성을 고려하여 점진적으로 회귀 모델을 갱신하는 기법을 제안한다. 이 기법은 입력되는 모든 데이터를 회귀 모델에 적용하여 점진적으로 모델을 갱신한다. 제안된 기법의 타당성은 RME(Relative Mean Error)와 RMSE(Root Mean Square Error)를 이용하여 측정하였다. 정확도 측정 실험 결과 제안 기법인 IMQR(Incremental Multiple Quadratic Regression) 기법이 MLR(Multiple Linear Regression), MQR(Multiple Quadratic Regression), SVR(Support Vector Regression) 기법에 비해 RME 가 평균 2%, RMSE 가 평균 0.02 정도 우수한 결과를 얻었다.

  • PDF

Use of big data for estimation of impacts of meteorological variables on environmental radiation dose on Ulleung Island, Republic of Korea

  • Joo, Han Young;Kim, Jae Wook;Jeong, So Yun;Kim, Young Seo;Moon, Joo Hyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4189-4200
    • /
    • 2021
  • In this study, the relationship between the environmental radiation dose rate and meteorological variables was investigated with multiple regression analysis and big data of those variables. The environmental radiation dose rate and 36 different meteorological variables were measured on Ulleung Island, Republic of Korea, from 2011 to 2015. Not all meteorological variables were used in the regression analysis because the different meteorological variables significantly affect the environmental radiation dose rate during different periods, and the degree of influence changes with time. By applying the Pearson correlation analysis and stepwise selection methods to the big dataset, the major meteorological variables influencing the environmental radiation dose rate were identified, which were then used as the independent variables for the regression model. Subsequently, multiple regression models for the monthly datasets and dataset of the entire period were developed.

MOISTURE CONTENT MEASUREMENT OF POWDERED FOOD USING RF IMPEDANCE SPECTROSCOPIC METHOD

  • Kim, K. B.;Lee, J. W.;S. H. Noh;Lee, S. S.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.188-195
    • /
    • 2000
  • This study was conducted to measure the moisture content of powdered food using RF impedance spectroscopic method. In frequency range of 1.0 to 30㎒, the impedance such as reactance and resistance of parallel plate type sample holder filled with wheat flour and red-pepper powder of which moisture content range were 5.93∼-17.07%w.b. and 10.87 ∼ 27.36%w.b., respectively, was characterized using by Q-meter (HP4342). The reactance was a better parameter than the resistance in estimating the moisture density defined as product of moisture content and bulk density which was used to eliminate the effect of bulk density on RF spectral data in this study. Multivariate data analyses such as principal component regression, partial least square regression and multiple linear regression were performed to develop one calibration model having moisture density and reactance spectral data as parameters for determination of moisture content of both wheat flour and red-pepper powder. The best regression model was one by the multiple linear regression model. Its performance for unknown data of powdered food was showed that the bias, standard error of prediction and determination coefficient are 0.179% moisture content, 1.679% moisture content and 0.8849, respectively.

  • PDF

Traffic Accident Models of 3-Legged Signalized Intersections in the Case of Cheongju (3지 신호교차로의 교통사고 발생모형 - 청주시를 사례로 -)

  • Park, Byung-Ho;Han, Sang-Uk;Kim, Tae-Young
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.94-99
    • /
    • 2009
  • This study deals with the traffic accidents at the 3-legged signalized intersections in Cheongu. The goals are to analyze the geometric, traffic and operational conditions of intersections and to develop a various functional forms that predict the accidents. The models are developed through the correlation analysis, the multiple linear, the multiple nonlinear, Poisson and negative binomial regression analysis. In this study, two multiple linear, two multiple nonlinear and two negative binomial regression models were calibrated. These models were all analyzed to be statistically significant. All the models include 2 common variables(traffic volume and lane width) and model-specific variables. These variables are, therefore, evaluated to be critical to the accident reduction of Cheongju.

Note on classification and regression tree analysis (분류와 회귀나무분석에 관한 소고)

  • 임용빈;오만숙
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.1
    • /
    • pp.152-161
    • /
    • 2002
  • The analysis of large data sets with hundreds of thousands observations and thousands of independent variables is a formidable computational task. A less parametric method, capable of identifying important independent variables and their interactions, is a tree structured approach to regression and classification. It gives a graphical and often illuminating way of looking at data in classification and regression problems. In this paper, we have reviewed and summarized tile methodology used to construct a tree, multiple trees and the sequential strategy for identifying active compounds in large chemical databases.

유전자 알고리듬을 이용한 다중이상치 탐색

  • Go Yeong-Hyeon;Lee Hye-Seon;Jeon Chi-Hyeok
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.173-179
    • /
    • 2000
  • Genetic algorithm(GA) is applied for detecting multiple outliers. GA is a heuristic optimization tool solving for near optimal solution. We compare the performance of GA and the other diagnostic measures commonly used for detecting outliers in regression model. The results show that GA seems to have better performance than the others for the detection of multiple outliers.

  • PDF

A Comparison of Construction Cost Estimation Using Multiple Regression Analysis and Neural Network in Elementary School Project

  • Cho, Hong-Gyu;Kim, Kyong-Gon;Kim, Jang-Young;Kim, Gwang-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.1
    • /
    • pp.66-74
    • /
    • 2013
  • In the early stages of a construction project, the most important thing is to predict construction costs in a rational way. For this reason, many studies have been performed on the estimation of construction costs for apartment housing and office buildings at early stage using artificial intelligence, statistics, and the like. In this study, cost data held by a provincial Office of Education on elementary schools constructed from 2004 to 2007 were used to compare the multiple regression model with an artificial neural network model. A total of 96 historical data were classified into 76 historical data for constructing models and 20 historical data for comparing the constructed regression model with the artificial neural network model. The results of an analysis of predicted construction costs were that the error rate of the artificial neural network model is lower than that of the multiple regression model.

Risk Assesment for Large-scale Slopes Using Multiple Regression Analysis (다중회귀분석을 이용한 대규모 비탈면의 위험도 평가)

  • Lee, Jong-Gun;Chang, Buhm-Soo;Kim, Yong-Soo;Suk, Jae-Wook;Moon, Joon-Shik
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.99-106
    • /
    • 2013
  • In this study, the correlation of evaluation items and safety rating for 104 of large-scale slopes along the general national road was analyzed. And, we proposed the regression model to predict the safety rating using the multiple regressions analysis. As the result, it is shown that the evaluation items of slope angle, rainfall and groundwater have a low correlation with safety rating. Also, the regression model suggested by multiple regression analysis shows high predictive value, and it would be possible to apply if the evaluation items of excavation condition and groundwater (rainfall) are not clear.

Non-Response Imputation for Panel Data (패널자료의 무응답 대체법)

  • Pak, Gi-Deok;Shin, Key-Il
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.6
    • /
    • pp.899-907
    • /
    • 2010
  • Several non-response imputation methods are suggested, however, mainly cross-sectional imputations are studied and applied to this analysis. A simple and common imputation method for panel data is the cross-wave regression imputation or carry-over imputation as a special case of cross-wave regression imputation. This study suggests a multiple imputation method combined time series analysis and cross-sectional multiple imputation method. We compare this method and the cross-wave regression imputation method using MSE, MAE, and Bias. The 2008 monthly labor survey data is used for this study.