• Title/Summary/Keyword: multipath error

Search Result 410, Processing Time 0.029 seconds

Simulating the Availability of Integrated GNSS Positioning in Dense Urban Areas (통합 GNSS 환경에서 도시공간 위성측위의 가용성 평가 시뮬레이션)

  • Suh, Yong-Cheol;Lee, Yang-Won
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.3
    • /
    • pp.231-238
    • /
    • 2007
  • This paper describes the availability of the forthcoming integrated GNSS(Global Navigation Positioning System) positioning that includes GPS(Global Positioning System), Galileo, and QZSS(Quasi-Zenith Satellites System). We built a signal propagation model that identifies direct, multipath, and diffraction signals, using the principles of specular reflection and ray tracing technique. The signal propagation model was combined with 3D GIS(three-dimensional geographic information system) in order to measure the satellite visibility and positioning error factors, such as the number of visible satellites, average elevation of visible satellites, optimized DOP(dilution of position) values, and the portion of multipath-producing satellites. Since Galileo and QZSS will not be fully operational until 2010, we used a simulation in comparing GPS and GNSS positioning for a $1km{\times}1km$ developed area in Shinjuku, Tokyo. To account for local terrain variation. we divided the target area into 40,000 $5m{\times}5m$ grid cells. The number of visible satellites and that of multipath-free satellites will be greatly increased in the integrated GNSS environment while the average elevation of visible satellites will be higher in the GPS positioning. Much decreased PDOP(position dilution of precision) values indicate the appropriate satellite/user geometry of the integrated GNSS; however, in dense urban areas, multipath mitigation will be more important than the satellite/user geometry. Thus, the efforts for applying current technologies of multipath mitigation to the future GNSS environment will be necessary.

Residual Synchronization Error Elimination in OFDM Baseband Receivers

  • Hu, Xingbo;Huang, Yumei;Hong, Zhiliang
    • ETRI Journal
    • /
    • v.29 no.5
    • /
    • pp.596-606
    • /
    • 2007
  • It is well known that an OFDM receiver is vulnerable to synchronization errors. Despite fine estimations used in the initial acquisition, there are still residual synchronization errors. Though these errors are very small, they severely degrade the bit error rate (BER) performance. In this paper, we propose a residual error elimination scheme for the digital OFDM baseband receiver aiming to improve the overall BER performance. Three improvements on existing schemes are made: a pilot-aided recursive algorithm for joint estimation of the residual carrier frequency and sampling time offsets; a delay-based timing error correction technique, which smoothly adjusts the incoming data stream without resampling disturbance; and a decision-directed channel gain update algorithm based on recursive least-squares criterion, which offers faster convergence and smaller error than the least-mean-squares algorithms. Simulation results show that the proposed scheme works well in the multipath channel, and its performance is close to that of an OFDM system with perfect synchronization parameters.

  • PDF

Performance Analysis of the Trellis Coded DS/SSMA System in Multipath Fading and Multiuser Channel Environments (다중경로 페이딩 및 다중사용자 채널 환경에서 Trellis 부호화를 이용한 DS/SSMA 시스템의 성능분석)

  • Park, Sung-Geun;Mok, Jin-Dam;Kang, Bong-Kwon;Jeon, Ki-Yong;Cho, Sung-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.5-11
    • /
    • 1997
  • In this paper, we investigate the performance of the direct sequence/spread spectrum multiple access (DS/SSMA) system using the Trellis coded modulation (TCM) technique in both multipath fading and multi-user channel environments. For this, an expression that represents the pairwise bit error probability of the system is derived. Unlike the existing results that were performed in a more restrictive condition considering only the multi-user effect, the effects of the multipath fading as well as the multi-user environments are compositely taken into account. In order to check the validity of our analysis, although not direct, computer simulations are carried out, and they show that our expression matches exactly with the previous work for which the TCM and the multipath effects were disregarded. Moreover, it is observed that the performance of the Trellis coded DS/SSMA system can be improved dramatically comparing to the uncoded QPSK system in the multipath fading and multi-user channel environments.

  • PDF

Effect of Imperfect Power Control on Performance of a PN Code Tracking Loop for a DS/CDMA System

  • Kim, Jin-Young
    • Proceedings of the IEEK Conference
    • /
    • 2000.06a
    • /
    • pp.209-212
    • /
    • 2000
  • In this paper, effect of imperfect power control on performance of a pseudonoise (PN) code tracking loop is analyzed and simulated for a direct-sequence/code-division multiple access (DS/CDMA) system. The multipath fading channel is modeled as a two-ray Rayleigh fading model. Power control error is modeled as a log-normally distributed random variable. The tracking performance of DLL (delay-locked-loop) is evaluated in terms of tracking jitter and mean-time-to-lose-lock (MTLL). From the simulation results, it is shown that the PN tracking performance is very sensitive to the power control error.

  • PDF

An Ordered Successive Interference Cancellation Scheme in UWB MIMO Systems

  • An, Jin-Young;Kim, Sang-Choon
    • ETRI Journal
    • /
    • v.31 no.4
    • /
    • pp.472-474
    • /
    • 2009
  • In this letter, an ordered successive interference cancellation (OSIC) scheme is applied for multiple-input multiple-output (MIMO) detection in ultra-wideband (UWB) communication systems. The error rate expression of an OSIC receiver on a log-normal multipath fading channel is theoretically derived in a closed form solution. Its bit error rate performance is analytically compared with that of a zero forcing receiver in the UWB MIMO detection scheme followed by RAKE combining.

Reduced-state sequence estimation for trellis-coded 8PSK/cyclic prefixed single carrier (트렐리스 부호화된 8PSK/CPSC를 위한 RSSE 방식)

  • 고상보;강훈철;좌정우
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.20-23
    • /
    • 2003
  • A reduced-state sequence estimation(RSSE) for trellis-coded (TC) 8PSK/cyclic prefixed single carrier(CPSC) with minimum mean-square error-liner equalization(MMSE-LE) on frequency-selective Rayleigh fading channels is proposed. The Viterbi algorithm (VA) is used to search for the best path through the reduced-state trellis combined equalization and TCM decoding. The symbol error probability of the proposed scheme is confirmed by computer simulation.

  • PDF

Analyzing Characteristics of GPS Dual-frequency SPP Techniques by Introducing the L2C Signal

  • Seonghyeon Yun;Hungkyu Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.157-166
    • /
    • 2023
  • Several experiments were carried out to analyze the impact of the modernized Global Positioning System (GPS) L2C signal on pseudorange-based point positioning. Three dual-frequency positioning algorithms, ionosphere-free linear combination, ionospheric error estimation, and simple integration, were used, and the results were compared with those of Standard Point Positioning (SPP). An analysis was conducted to determine the characteristics of each dual-frequency positioning method, the impact of the magnitude of ionospheric error, and receiver grade. Ionosphere-free and ionospheric error estimation methods can provide improved positioning accuracy relative to SPP because they are able to significantly reduce the ionospheric error. However, this result was possible only when the ionospheric error reduction effect was greater than the disadvantage of these dual-frequency positioning algorithms such as the increment of multipath and noise, impact of uncertainty of unknown parameter estimation. The RMSE of the simple integration algorithm was larger than that of SPP, because of the remaining ionospheric error. Even though the receiver grade was different, similar results were observed.

Performance Analysis of LDPC code with Channel Estimation in Underwater Communication (수중통신 채널에서 채널 추정 오차에 따른 LDPC 부호 성능분석)

  • Kim, Nam-Soo;Jung, Ji-Won;Kim, Ki-Man;Seo, Dong-Hoan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2295-2303
    • /
    • 2009
  • Underwater acoustic(UWA) communication has multipath error because of reflection by sea-level and sea-bottom. The multipath of UWA channel causes signal distortion and error floor. In this paper, we proposed the compensation method of multipath effect using the impulse response of the UWA channel and then analysis the performance of channel coding such as LDPC code, concatenate code. Also we analysed the time-delay errors and estimated amplitude errors of estimated channel information and its affection on the performance. As shown in simulation results, the performance of proposed compensation method is better than the performance of conventional method.

A Channel Estimation Method for Multipath Feedback Interference Signal Cancellation of RF Repeaters (RF 중계기의 다중 궤환 간섭 신호 제거를 위한 채널 추정 방식)

  • Lee, Sang-Dae;Park, Jin;Sung, Won-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2A
    • /
    • pp.98-106
    • /
    • 2008
  • To reduce the outage probability and to increase the transmission capacity, the importance of repeaters in cellular systems keeps increasing. Unlike optical repeaters which require wireline connections, RF repeaters are easy to install, have low limitations in location and also have a reduced operational expense such as the optical fiber maintenance cost. On the other hand, RF repeaters suffer the interference due to the feedback signals between the transmitter and receiver antennas, hence require an extra interference cancellation method when the amount of the feedback signal reduction by using the shielding is not sufficient. In this paper, a channel estimation method for two-path feedback interference signals in the ICS (Interference Cancellation System) repeaters using baseband signal processing is proposed and its performance is evaluated. When compared with the conventional method which estimates each multipath individually, the proposed method achieves 10 dB performance gain in terms of the normalized mean-squared-error.

Performance Comparison of Autoencoder based OFDM Communication System with Wi-Fi

  • Shiho Oshiro;Takao Toma;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.172-178
    • /
    • 2023
  • In this paper, performance of autoencoder based OFDM communication systems is compared with IEEE 802.11a Wireless Lan System (Wi-Fi). The proposed autoencoder based OFDM system is composed of the following steps. First, one sub-carrier's transmitter - channel - receiver system is created by autoencoder. Then learning process of the one sub-carrier autoencoder generates constellation map. Secondly, using the plural sub-carrier autoencoder systems, parallel bundle is configured with inserting IFFT and FFT before and after the channel to configure OFDM system. Finally, the receiver part of the OFDM communication system was updated by re-learning process for adapting channel condition such as multipath channel. For performance comparison, IEEE802.11a and the proposed autoencoder based OFDM system are compared. For channel estimation, Wi-Fi uses initial long preamble to measure channel condition. but Autoencoder needs re-learning process to create an equalizer which compensate a distortion caused by the transmission channel. Therefore, this autoencoder based system has basic advantage to the Wi-Fi system. For the comparison of the system, additive random noise and 2-wave and 4-wave multipaths are assumed in the transmission path with no inter-symbol interference. A simulation was performed to compare the conventional type and the autoencoder. As a result of the simulation, the autoencoder properly generated automatic constellations with QPSK, 16QAM, and 64QAM. In the previous simulation, the received data was relearned, thus the performance was poor, but the performance improved by making the initial value of reception a random number. A function equivalent to an equalizer for multipath channels has been realized in OFDM systems. As a future task, there is not include error correction at this time, we plan to make further improvements by incorporating error correction in the future.