• Title/Summary/Keyword: multipath channels

Search Result 258, Processing Time 0.023 seconds

Performance analysis of iterative groupwise equal-delay interference cancellation(IGEIC) for multiuser detection of coherent W-CDMA system (동기복조 W-CDMA 시스템의 다중 사용자 검출을 위한 반복 그룹단위 등지연 간섭제거(IGEIC) 알고리즘 성능해석)

  • 구제길;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.3B
    • /
    • pp.179-187
    • /
    • 2002
  • This paper proposes and analyzes the iterative groupwise equal-delay interference cancellation(IGEIC) algorithm for coherent detection of an asynchronous wideband DS-CDMA system in a single cell over multipath fading channels. The IGEIC algorithm divide users in a system into several groups, and subtract out interference signal from the received signal as many as the number of users within a user group, iteratively. The IGEIC algorithm is also classified into the iterative groupwise equal-delay serial interference cancellation(IGESIC) algorithm and the iterative groupwise equal-delay parallel interference cancellation(IGEPIC) algorithm. In the case of perfect correlation for spreading codes, it shows that the performance of IGESIC and IGEPIC algorithm is the same after interference cancellation of as many as the number of users within a user group, but the performance of IGEPIC algorithm is superior to the IGESIC algorithm just before fecal cancellation within a user group. The results show that (he performance of the two proposed algorithms are also superior to the SIC algorithm by 3dB.

An Efficient Decoding Method for High Throughput in Underwater Communication (수중통신에서 고 전송률을 위한 효율적인 복호 방법)

  • Baek, Chang-Uk;Jung, Ji-Won;Chun, Seung-Yong;Kim, Woo-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.4
    • /
    • pp.295-302
    • /
    • 2015
  • Acoustic channels are characterized by long multipath spreads that cause inter-symbol interference. The way in which this fact influences the design of the receiver structure is considered. To satisfy performance and throughput, we presented consecutive iterative BCJR (Bahl, Cocke, Jelinek, Raviv) equalization to improve the performance and throughput. To achieve low error performance, we resort to powerful BCJR equalization algorithms that iteratively update probabilistic information between inner decoder and outer decoder. Also, to achieve high throughput, we divide long packet into consecutive small packets, and the estimate channel information of previous packets are compensated to next packets. Based on experimental channel response, we confirmed that the performance is improved for long length packet size.

Performance of PN Code Based Time Hopping Sequences in M-ary Ultra Wide Band Multiple Access Systems Using Equicorrelated Signal Sets (동일 상관 신호군을 이용하는 M-ary UWB 다원 접속 시스템에서 PN 부호 기반 시간 도약 시퀀스의 성능)

  • 양석철;신요안
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.10A
    • /
    • pp.816-829
    • /
    • 2003
  • In this paper, we evaluate the performance of PN (Pseudo Noise) code based time hopping sequences for M-ary UWB (Ultra Wide Band) multiple access systems using the equicorrelated signal sets. In particular, we consider two different types of M-ary UWB systems in UWB indoor wireless multipath channels: The first type of the systems (System #1) has identical symbol transmission rate regardless of the number of symbols M since the length of signal pulse train is fixed while M increases, and the second type of the systems (System #2) has the same bit transmission rate regardless of M since the length of signal pulse train is extended according to the increase of M. We compare the proposed systems with those using the ideal random time hopping sequence in terms of the symbol error rate performance. Simulation results show that the PN code based time hopping sequence achieves quite good performance which is favorably comparable to that of the ideal random sequence. Moreover, as M increases, we observe that System #2 shows better robustness against multiple access interference than System # 1.

An Improved Combining of Hard Decisions for Cooperative Spectrum Sensing in Cognitive Radio Systems (무선인지 시스템에서 협력 스팩트럼 센싱 성능 향상을 위한 경판정 결합 기법)

  • Shin, Oh-Soon;Shin, Yo-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2A
    • /
    • pp.132-138
    • /
    • 2009
  • Cognitive radio is considered as a promising solution to scarce spectrum problem. The primary object of cognitive radio is to increase spectral efficiency, while causing limited interference to primary users who are using the spectrum. Hence, an essential part of cognitive radio systems is spectrum sensing which determines whether a particular spectrum is occupied or not by a primary user at a particular time. However, sensing decision of each individual secondary user alone may not be reliable enough due to shadowing and multipath fading of wireless channels. The so called hidden terminal problem makes the problem even worse, possibly yielding undesired interference to the primary users. Recently, cooperative spectrum sensing is emerging as a remedy to these problems of individual sensing. Cooperative sensing allows a group of secondary users to share local sensing information to extract a global decision with high fidelity. In this paper, we investigate a cooperative spectrum sensing algorithm based on hard decisions of local sensing outcomes. Specifically, we propose an effective scheme for combining local decisions by introducing weighting factors that reflect reliability of the corresponding secondary user. Through computer simulations, the performance of the proposed combining scheme is compared with that of the conventional scheme without weighting factors in various environments.

Design and Implementation of Wireless Asynchronous UWB System for low-rate low power PAN applications (저속도 저전력 PAN 응용을 위한 무선 비동기식 UWB 시스템 설계 및 구현)

  • Choi, Sung-Soo;Koo, In-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2021-2026
    • /
    • 2007
  • In the parer, we design a non-coherent UWB system by adopting the architecture of a simplified asynchronous transmission and the edge-triggered pulse transmission, which makes e system performance independent of the share of the transmitted waveform, robust to multipath channels. The designed non-coherent UWB transceiver architecture has an advantage of the simple realization since any mixer, high-speed correlator, and high-sampling A/D converter are not necessary at the cost of performance degradation of about 3dB. Further, the designed non-coherent UWB transceiver is actually implemented with the wireless CANVAS prototype testbed in short range indoor application environments such as a lecture room. The implemented prototype testbed is proven to offer the data rate of 115kbps on the conditions of Peer-to-Peer(P-to-P) in the indoor channel within the range of about 10m.

Covariance-based source localization performance improvement for underwater ultra-short baseline systems (공분산 기반 수중 ultra-short baseline 시스템의 위치 추정 성능 개선 기법)

  • Sangman Han;Minhyuk Cha;Haklim Ko;Hojun Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.89-94
    • /
    • 2024
  • Since Ultra-Short BaseLine (USBL) uses an array with narrow sensor spacing, precise synchronization is required to improve source localization performances. However, in the underwater environment, synchronization errors occur due to relatively strong noise and underwater acoustic channels such as multipath and Doppler, which deteriorates the source localization performances. This paper proposes a covariance-based synchronization compensation method to improve the source localization performances of the underwater USBL systems. The proposed method arranges the received signals through cross-correlation and calculates the covariance of the arranged signals. The synchronization error is related to the phase difference in the covariance. Thus, the phase difference is estimated as the covariance and compensated. Computer simulations demonstrate that the proposed method has better source localization performances than the conventional cross-correlation method.

A channel parameter-based weighting method for performance improvement of underwater acoustic communication system using single vector sensor (단일 벡터센서의 수중음향 통신 시스템 성능 향상을 위한 채널 파라미터 기반 가중 방법)

  • Kang-Hoon, Choi;Jee Woong, Choi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.610-620
    • /
    • 2022
  • An acoustic vector sensor can simultaneously receive vector quantities, such as particle velocity and acceleration, as well as acoustic pressure at one location, and thus it can be used as a single input multiple output receiver in underwater acoustic communication systems. On the other hand, vector signals received by a single vector sensor have different channel characteristics due to the azimuth angle between the source and receiver and the difference in propagation angle of multipath in each component, producing different communication performances. In this paper, we propose a channel parameter-based weighting method to improve the performance of an acoustic communication system using a single vector sensor. To verify the proposed method, we used communication data collected from the experiment conducted during the KOREX-17 (Korea Reverberation Experiment). For communication demodulation, block-based time reversal technique which is robust against time-varying channels were utilized. Finally, the communication results showed that the effectiveness of the channel parameter-based weighting method for the underwater communication system using a single vector sensor was verified.

A study of Development of Transmission Systems for Terrestrial Single Channel Fixed 4K UHD & Mobile HD Convergence Broadcasting by Employing FEF (Future Extension Frame) Multiplexing Technique (FEF (Future Extension Frame) 다중화 기법을 이용한 지상파 단일 채널 고정 4K UHD & 이동 HD 융합방송 전송시스템 개발에 관한 연구)

  • Oh, JongGyu;Won, YongJu;Lee, JinSeop;Kim, JoonTae
    • Journal of Broadcast Engineering
    • /
    • v.20 no.2
    • /
    • pp.310-339
    • /
    • 2015
  • In this paper, the possibility of a terrestrial fixed 4K UHD (Ultra High Definition) and mobile HD (High Definition) convergence broadcasting service through a single channel employing the FEF (Future Extension Frame) multiplexing technique in DVB (Digital Video Broadcasting)-T2 (Second Generation Terrestrial) systems is examined. The performance of such a service is also investigated. FEF multiplexing technology can be used to adjust the FFT (fast Fourier transform) and CP (cyclic prefix) size for each layer, whereas M-PLP (Multiple-Physical Layer Pipe) multiplexing technology in DVB-T2 systems cannot. The convergence broadcasting service scenario, which can provide fixed 4K UHD and mobile HD broadcasting through a single terrestrial channel, is described, and transmission requirements of the SHVC (Scalable High Efficiency Video Coding) technique are predicted. A convergence broadcasting transmission system structure is described by employing FEF and transmission technologies in DVB-T2 systems. Optimized transmission parameters are drawn to transmit 4K UHD and HD convergence broadcasting by employing a convergence broadcasting transmission structure, and the reception performance of the optimized transmission parameters under AWGN (additive white Gaussian noise), static Brazil-D, and time-varying TU (Typical Urban)-6 channels is examined using computer simulations to find the TOV (threshold of visibility). From the results, for the 6 and 8 MHz bandwidths, reliable reception of both fixed 4K UHD and mobile HD layer data can be achieved under a static fixed and very fast fading multipath channel.