• 제목/요약/키워드: multimodal fusion

검색결과 53건 처리시간 0.02초

조합기법을 이용한 다중생체신호의 특징추출에 의한 실시간 인증시스템 개발 (Development of Real-Time Verification System by Features Extraction of Multimodal Biometrics Using Hybrid Method)

  • 조용현
    • 한국산업융합학회 논문집
    • /
    • 제9권4호
    • /
    • pp.263-268
    • /
    • 2006
  • This paper presents a real-time verification system by extracting a features of multimodal biometrics using hybrid method, which is combined the moment balance and the independent component analysis(ICA). The moment balance is applied to reduce the computation loads by extracting the validity signal due to exclude the needless backgrounds of multimodal biometrics. ICA is also applied to increase the verification performance by removing the overlapping signals due to extract the statistically independent basis of signals. Multimodal biometrics are used both the faces and the fingerprints which are acquired by Web camera and acquisition device, respectively. The proposed system has been applied to the fusion problems of 48 faces and 48 fingerprints(24 persons * 2 scenes) of 320*240 pixels, respectively. The experimental results show that the proposed system has a superior verification performances(speed, rate).

  • PDF

Multimodal Data Fusion for Alzheimers Patients Using Dempster-Shafer Theory of Evidence

  • Majumder, Dwijesh Dutta;Bhattacharya, Nahua
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.713-718
    • /
    • 1998
  • The paper is part of an investigation by the authors on development of a knowledge based frame work for multimodal medical image in collaboration with the All India Institute of Medical Science, new Delhi. After presenting the key aspects of the Dempster-Shafer Evidence theory we have presented implementation of registration and fusion of T₁and T₂ weighted MR images and CT images of the brain of an Alzheimer's patient for minimising the uncertainty and increasing the reliability for dianostics and therapeutic planning.

  • PDF

멀티모달 맥락정보 융합에 기초한 다중 물체 목표 시각적 탐색 이동 (Multi-Object Goal Visual Navigation Based on Multimodal Context Fusion)

  • 최정현;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권9호
    • /
    • pp.407-418
    • /
    • 2023
  • MultiOn(Multi-Object Goal Visual Navigation)은 에이전트가 미지의 실내 환경 내 임의의 위치에 놓인 다수의 목표 물체들을 미리 정해준 일정한 순서에 따라 찾아가야 하는 매우 어려운 시각적 탐색 이동 작업이다. MultiOn 작업을 위한 기존의 모델들은 행동 선택을 위해 시각적 외관 지도나 목표 지도와 같은 단일 맥락 지도만을 이용할 뿐, 다양한 멀티모달 맥락정보에 관한 종합적인 관점을 활용할 수 없다는 한계성을 가지고 있다. 이와 같은 한계성을 극복하기 위해, 본 논문에서는 MultiOn 작업을 위한 새로운 심층 신경망 기반의 에이전트 모델인 MCFMO(Multimodal Context Fusion for MultiOn tasks)를 제안한다. 제안 모델에서는 입력 영상의 시각적 외관 특징외에 환경 물체의 의미적 특징, 목표 물체 특징도 함께 포함한 멀티모달 맥락 지도를 행동 선택에 이용한다. 또한, 제안 모델은 점-단위 합성곱 신경망 모듈을 이용하여 3가지 서로 이질적인 맥락 특징들을 효과적으로 융합한다. 이 밖에도 제안 모델은 효율적인 이동 정책 학습을 유도하기 위해, 목표 물체의 관측 여부와 방향, 그리고 거리를 예측하는 보조 작업 학습 모듈을 추가로 채용한다. 본 논문에서는 Habitat-Matterport3D 시뮬레이션 환경과 장면 데이터 집합을 이용한 다양한 정량 및 정성 실험들을 통해, 제안 모델의 우수성을 확인하였다.

A Multimodal Fusion Method Based on a Rotation Invariant Hierarchical Model for Finger-based Recognition

  • Zhong, Zhen;Gao, Wanlin;Wang, Minjuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권1호
    • /
    • pp.131-146
    • /
    • 2021
  • Multimodal biometric-based recognition has been an active topic because of its higher convenience in recent years. Due to high user convenience of finger, finger-based personal identification has been widely used in practice. Hence, taking Finger-Print (FP), Finger-Vein (FV) and Finger-Knuckle-Print (FKP) as the ingredients of characteristic, their feature representation were helpful for improving the universality and reliability in identification. To usefully fuse the multimodal finger-features together, a new robust representation algorithm was proposed based on hierarchical model. Firstly, to obtain more robust features, the feature maps were obtained by Gabor magnitude feature coding and then described by Local Binary Pattern (LBP). Secondly, the LGBP-based feature maps were processed hierarchically in bottom-up mode by variable rectangle and circle granules, respectively. Finally, the intension of each granule was represented by Local-invariant Gray Features (LGFs) and called Hierarchical Local-Gabor-based Gray Invariant Features (HLGGIFs). Experiment results revealed that the proposed algorithm is capable of improving rotation variation of finger-pose, and achieving lower Equal Error Rate (EER) in our homemade database.

RBF 기반 유사도 단계 융합 다중 생체 인식에서의 품질 활용 방안 연구 (A study of using quality for Radial Basis Function based score-level fusion in multimodal biometrics)

  • 최현석;신미영
    • 전자공학회논문지CI
    • /
    • 제45권5호
    • /
    • pp.192-200
    • /
    • 2008
  • 다중 생체 인식은 둘 이상의 생체 정보를 획득하여 이를 기반으로 개인 인증 및 신원을 확인하는 방법으로, 패턴 분류 알고리즘을 이용한 RBF 기반 유사도 단계 융합 다중 생체 인식은 입력된 생체 정보와 데이터베이스 내의 유사도를 나타내는 매칭 값을 각 단일 생체 인식 시스템으로부터 제공받아 이를 이용하여 특징 벡터를 구성하고, 특징 공간상에서 사용자와 위조자를 구분해주는 최적의 판정 경계를 탐색하여 인식을 수행하는 방법이다. 이러한 패턴 분류 알고리즘의 경우 특징 벡터를 구성하는 각 매칭값이 동일한 신뢰도를 가지고 있다는 가정 하에 고정된 판정 경계를 구성하고 분류를 수행하게 된다. 한편, 생체 인식 시스템의 인식 결과는 입력되는 생체 정보의 품질에 영향을 받을 수 있음이 기존의 연구에서 보고되고 있는데, 이는 일반적인 RBF 기반 유사도 단계 융합 다중 생체 인식 시스템을 구성하고 있는 단일 생체 인식 시스템 중 하나의 시스템에 저품질의 생체 정보가 입력되어 신뢰할 수 없는 매칭값을 출력한 경우에는 이를 기반으로 구성된 특징 벡터의 판정이 오분류 되거나 그 결과의 신뢰도가 감소될 수 있는 문제가 있다. 이에 대한 대안으로 본 논문에서는 각 단일 생체 인식 시스템에 입력되는 생체 정보의 품질을 활용하여 RBF 기반 유사도 단계 융합 다중 생체 인식 시스템에서 품질에 따라 유동적인 판정 경계를 구성하여 특징 벡터를 구성하는 각 매칭값이 판정에 미치는 영향을 조절하고자 하였다. 이를 통해 각 생체 정보가 그 품질에 따라 판정에 미치는 영향이 달리 적용될 수 있도록 하였으며, 그 결과 단일 생체 인식과 일반적인 RBF 기반 유사도 단계 융합 다중 생체 인식에 비해 보다 개선된 인식 결과와 신뢰도를 얻을 수 있었다.

A Survey of Multimodal Systems and Techniques for Motor Learning

  • Tadayon, Ramin;McDaniel, Troy;Panchanathan, Sethuraman
    • Journal of Information Processing Systems
    • /
    • 제13권1호
    • /
    • pp.8-25
    • /
    • 2017
  • This survey paper explores the application of multimodal feedback in automated systems for motor learning. In this paper, we review the findings shown in recent studies in this field using rehabilitation and various motor training scenarios as context. We discuss popular feedback delivery and sensing mechanisms for motion capture and processing in terms of requirements, benefits, and limitations. The selection of modalities is presented via our having reviewed the best-practice approaches for each modality relative to motor task complexity with example implementations in recent work. We summarize the advantages and disadvantages of several approaches for integrating modalities in terms of fusion and frequency of feedback during motor tasks. Finally, we review the limitations of perceptual bandwidth and provide an evaluation of the information transfer for each modality.

이동환경에서 치열영상과 음성을 이용한 멀티모달 화자인증 시스템 구현 (An Implementation of Multimodal Speaker Verification System using Teeth Image and Voice on Mobile Environment)

  • 김동주;하길람;홍광석
    • 전자공학회논문지CI
    • /
    • 제45권5호
    • /
    • pp.162-172
    • /
    • 2008
  • 본 논문에서는 이동환경에서 개인의 신원을 인증하는 수단으로 치열영상과 음성을 생체정보로 이용한 멀티모달 화자인증 방법에 대하여 제안한다. 제안한 방법은 이동환경의 단말장치중의 하나인 스마트폰의 영상 및 음성 입력장치를 이용하여 생체 정보를 획득하고, 이를 이용하여 사용자 인증을 수행한다. 더불어, 제안한 방법은 전체적인 사용자 인증 성능의 향상을 위하여 두 개의 단일 생체인식 결과를 결합하는 멀티모달 방식으로 구성하였고, 결합 방법으로는 시스템의 제한된 리소스를 고려하여 비교적 간단하면서도 우수한 성능을 보이는 가중치 합의 방법을 사용하였다. 제안한 멀티모달 화자인증 시스템의 성능평가는 스마트폰에서 획득한 40명의 사용자에 대한 데이터베이스를 이용하였고, 실험 결과, 치열영상과 음성을 이용한 단일 생체인증 결과는 각각 8.59%와 11.73%의 EER를 보였으며, 멀티모달 화자인증 결과는 4.05%의 EER를 나타냈다. 이로부터 본 논문에서는 인증 성능을 향상하기 위하여 두 개의 단일 생체인증 결과를 간단한 가중치 합으로 결합한 결과, 높은 인증 성능의 향상을 도모할 수 있었다.

요추 유합술 후 기능 회복 치료법 (Functional Recovery Program after Lumbar Spinal Fusion)

  • 강태욱;박시영;이순혁
    • 대한정형외과학회지
    • /
    • 제55권3호
    • /
    • pp.222-228
    • /
    • 2020
  • 노년층 인구가 증가함에 따라 요추 유합술의 빈도가 높아지면서 수술 후 빠른 회복 및 기능 회복 치료법에 대한 관심이 증가하고 있다. 수술 후 조기 회복 프로그램, 다중 통증 조절법을 통하여 합병증을 줄이고 빠른 회복을 기대할 수 있으며 유합률을 높일 수 있는 다양한 방법을 사용하고 있다.

반자율주행 맥락에서 AI 에이전트의 멀티모달 인터랙션이 운전자 경험에 미치는 효과 : 시각적 캐릭터 유무를 중심으로 (The Effect of AI Agent's Multi Modal Interaction on the Driver Experience in the Semi-autonomous Driving Context : With a Focus on the Existence of Visual Character)

  • 서민수;홍승혜;이정명
    • 한국콘텐츠학회논문지
    • /
    • 제18권8호
    • /
    • pp.92-101
    • /
    • 2018
  • 대화형 AI 스피커가 보편화되면서 음성인식은 자율주행 상황에서의 중요한 차량-운전자 인터랙션 방식으로 인식되고 있다. 이 연구의 목적은 반자율주행 상황에서 음성뿐만 아니라 AI 캐릭터의 시각적 피드백을 함께 전달하는 멀티모달 인터랙션이 음성 단일 모드 인터랙션보다 사용자 경험 최적화에 효과적인지를 확인하는 것이다. 실험 참가자에게 주행 중 AI 스피커와 캐릭터를 통해 음악 선곡과 조정을 위한 인터랙션 태스크를 수행하게 하고, 정보 및 시스템 품질, 실재감, 지각된 유용성과 용이성, 그리고 지속 사용 의도를 측정하였다. 평균차이 분석 결과, 대부분의 사용자 경험 요인에서 시각적 캐릭터의 멀티모달 효과는 나타나지 않았으며, 지속사용 의도에서도 효과는 나타나지 않았다. 오히려, 정보품질 요인에서 음성 단일 모드가 멀티모달보다 효과적인 것으로 나타났다. 운전자의 인지적 노력이 필요한 반자율주행 단계에서는 멀티모달 인터랙션이 단일 모드 인터랙션에 비해 사용자 경험 최적화에 효과적이지 않았다.

뇌 종양 등급 분류를 위한 심층 멀티모달 MRI 통합 모델 (Deep Multimodal MRI Fusion Model for Brain Tumor Grading)

  • 나인예;박현진
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.416-418
    • /
    • 2022
  • 신경교종(glioma)은 신경교세포에서 발생하는 뇌 종양으로 low grade glioma와 예후가 나쁜 high grade glioma로 분류된다. 자기공명영상(magnetic Resonance Imaging, MRI)은 비침습적 수단으로 이를 이용한 신경교종 진단에 대한 연구가 활발히 진행되고 있다. 또한, 단일 modality의 정보 한계를 극복하기 위해 다중 modality를 조합하여 상호 보완적인 정보를 얻는 연구도 진행되고 있다. 본 논문은 네가지 modality(T1, T1Gd, T2, T2-FLAIR)의 MRI 영상에 입력단 fusion을 적용한 3D CNN 기반의 모델을 제안한다. 학습된 모델은 검증 데이터에 대해 정확도 0.8926, 민감도 0.9688, 특이도 0.6400, AUC 0.9467의 분류 성능을 보였다. 이를 통해 여러 modality 간의 상호관계를 학습하여 신경교종의 등급을 효과적으로 분류함을 확인하였다.

  • PDF