• 제목/요약/키워드: multimodal algorithm

검색결과 79건 처리시간 0.027초

Coupling Particles Swarm Optimization for Multimodal Electromagnetic Problems

  • Pham, Minh-Trien;Song, Min-Ho;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권3호
    • /
    • pp.423-430
    • /
    • 2010
  • Particle swarm optimization (PSO) algorithm is designed to find a single global optimal point. However, the PSO needs to be modified in order to find multiple optimal points of a multimodal function. These modifications usually divide a swarm of particles into multiple subswarms; in turn, these subswarms try to find their own optimal point, resulting in multiple optimal points. In this work, we present a new PSO algorithm, called coupling PSO to find multiple optimal points of a multimodal function based on coupling particles. In the coupling PSO, each main particle may generate a new particle to form a couple, after which the couple searches its own optimal point using non-stop-moving PSO algorithm. We tested the suggested algorithm and other ones, such as clustering PSO and niche PSO, over three analytic functions. The coupling PSO algorithm was also applied to solve a significant benchmark problem, the TEAM workshop problem 22.

AI 멀티모달 센서 기반 보행자 영상인식 알고리즘 (AI Multimodal Sensor-based Pedestrian Image Recognition Algorithm)

  • 신성윤;조승표;조광현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제67차 동계학술대회논문집 31권1호
    • /
    • pp.407-408
    • /
    • 2023
  • In this paper, we intend to develop a multimodal algorithm that secures recognition performance of over 95% in daytime illumination environments and secures recognition performance of over 90% in bad weather (rainfall and snow) and night illumination environments.

  • PDF

수도권 복합 대중교통망의 복수 대안 경로 탐색 알고리즘 고찰 (A Study on Finding the K Shortest Paths for the Multimodal Public Transportation Network in the Seoul Metropolitan)

  • 박종훈;손무성;오석문;민재홍
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.607-613
    • /
    • 2011
  • This paper reviews search methods of multiple reasonable paths to implement multimodal public transportation network of Seoul. Such a large scale multimodal public transportation network as Seoul, the computation time of path finding algorithm is a key and the result of path should reflect route choice behavior of public transportation passengers. Search method of alternative path is divided by removing path method and deviation path method. It analyzes previous researches based on the complexity of algorithm for large-scale network. Applying path finding algorithm in public transportation network, transfer and loop constraints must be included to be able to reflect real behavior. It constructs the generalized cost function based on the smart card data to reflect travel behavior of public transportation. To validate the availability of algorithm, experiments conducted with Seoul metropolitan public multimodal transportation network consisted with 22,109 nodes and 215,859 links by using the deviation path method, suitable for large-scale network.

  • PDF

Multimodal Optimization Based on Global and Local Mutation Operators

  • Jo, Yong-Gun;Lee, Hong-Gi;Sim, Kwee-Bo;Kang, Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1283-1286
    • /
    • 2005
  • Multimodal optimization is one of the most interesting topics in evolutionary computational discipline. Simple genetic algorithm, a basic and good-performance genetic algorithm, shows bad performance on multimodal problems, taking long generation time to obtain the optimum, converging on the local extrema in early generation. In this paper, we propose a new genetic algorithm with two new genetic mutational operators, i.e. global and local mutation operators, and no genetic crossover. The proposed algorithm is similar to Simple GA and the two genetic operators are as simple as the conventional mutation. They just mutate the genes from left or right end of a chromosome till the randomly selected gene is replaced. In fact, two operators are identical with each other except for the direction where they are applied. Their roles of shaking the population (global searching) and fine tuning (local searching) make the diversity of the individuals being maintained through the entire generation. The proposed algorithm is, therefore, robust and powerful.

  • PDF

A Network Capacity Model for Multimodal Freight Transportation Systems

  • Park, Min-Young;Kim, Yong-Jin
    • 한국항만경제학회지
    • /
    • 제22권1호
    • /
    • pp.175-198
    • /
    • 2006
  • This paper presents a network capacity model that can be used as an analytical tool for strategic planning and resource allocation for multimodal transportation systems. In the context of freight transportation, the multimodal network capacity problem (MNCP) is formulated as a mathematical model of nonlinear bi-level optimization problem. Given network configuration and freight demand for multiple origin-destination pairs, the MNCP model is designed to determine the maximum flow that the network can accommodate. To solve the MNCP, a heuristic solution algorithm is developed on the basis of a linear approximation method. A hypothetical exercise shows that the MNCP model and solution algorithm can be successfully implemented and applied to not only estimate the capacity of multimodal network, but also to identify the capacity gaps over all individual facilities in the network, including intermodal facilities. Transportation agencies and planners would benefit from the MNCP model in identifying investment priorities and thus developing sustainable transportation systems in a manner that considers all feasible modes as well as low-cost capacity improvements.

  • PDF

멀티모달 함수의 최적화를 위한 먼델 연산 유전자 알고리즘 (A Genetic Algorithm with a Mendel Operator for Multimodal Function Optimization)

  • 송인수;심재완;탁민제
    • 제어로봇시스템학회논문지
    • /
    • 제6권12호
    • /
    • pp.1061-1069
    • /
    • 2000
  • In this paper, a new genetic algorithm is proposed for solving multimodal function optimization problems that are not easily solved by conventional genetic algorithm(GA)s. This algorithm finds one of local optima first and another optima at the next iteration. By repeating this process, we can locate all the local solutions instead of one local solution as in conventional GAs. To avoid converging to the same optimum again, we devise a new genetic operator, called a Mendel operator which simulates the Mendels genetic law. The proposed algorithm remembers the optima obtained so far, compels individuals to move away from them, and finds a new optimum.

  • PDF

Multimodal layer surveillance map based on anomaly detection using multi-agents for smart city security

  • Shin, Hochul;Na, Ki-In;Chang, Jiho;Uhm, Taeyoung
    • ETRI Journal
    • /
    • 제44권2호
    • /
    • pp.183-193
    • /
    • 2022
  • Smart cities are expected to provide residents with convenience via various agents such as CCTV, delivery robots, security robots, and unmanned shuttles. Environmental data collected by various agents can be used for various purposes, including advertising and security monitoring. This study suggests a surveillance map data framework for efficient and integrated multimodal data representation from multi-agents. The suggested surveillance map is a multilayered global information grid, which is integrated from the multimodal data of each agent. To confirm this, we collected surveillance map data for 4 months, and the behavior patterns of humans and vehicles, distribution changes of elevation, and temperature were analyzed. Moreover, we represent an anomaly detection algorithm based on a surveillance map for security service. A two-stage anomaly detection algorithm for unusual situations was developed. With this, abnormal situations such as unusual crowds and pedestrians, vehicle movement, unusual objects, and temperature change were detected. Because the surveillance map enables efficient and integrated processing of large multimodal data from a multi-agent, the suggested data framework can be used for various applications in the smart city.

향상된 유전알고리듬과 Simplex method을 이용한 다봉성 함수의 최적화 (Optimization of Multimodal Function Using An Enhanced Genetic Algorithm and Simplex Method)

  • 김영찬;양보석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.587-592
    • /
    • 2000
  • The optimization method based on an enhanced genetic algorithms is proposed for multimodal function optimization in this paper. This method is consisted of two main steps. The first step is global search step using the genetic algorithm(GA) and function assurance criterion(FAC). The belonging of an population to initial solution group is decided according to the FAC. The second step is to decide the similarity between individuals, and to research the optimum solutions by simplex method in reconstructive search space. Two numerical examples are also presented in this paper to comparing with conventional methods.

  • PDF

스마트폰 환경의 인증 성능 최적화를 위한 다중 생체인식 융합 기법 연구 (Authentication Performance Optimization for Smart-phone based Multimodal Biometrics)

  • 문현준;이민형;정강훈
    • 디지털융복합연구
    • /
    • 제13권6호
    • /
    • pp.151-156
    • /
    • 2015
  • 본 논문에서는 스마트폰 환경의 얼굴 검출, 인식 및 화자 인증 기반 다중생체인식 개인인증 시스템을 제안한다. 제안된 시스템은 Modified Census Transform과 gabor filter 및 k-means 클러스터 분석 알고리즘을 통해 얼굴의 주요 특징을 추출하여 얼굴인식을 위한 데이터 전처리를 수행한다. 이후 Linear Discriminant Analysis기반 본인 인증을 수행하고(얼굴인식), Mel Frequency Cepstral Coefficient기반 실시간성 검증(화자인증)을 수행한다. 화자인증에 사용하는 음성 정보는 실시간으로 변화하므로 본 논문에서는 Dynamic Time Warping을 통해 이를 해결한다. 제안된 다중생체인식 시스템은 얼굴 및 음성 특징 정보를 융합 및 스마트폰 환경에 최적화하여 실시간 얼굴검출, 인식과 화자인증 과정을 수행하며 단일 생체인식에 비해 약간 낮은 95.1%의 인식률을 보이지만 1.8%의 False Acceptance Ratio를 통해 객관적인 실시간 생체인식 성능을 입증하여 보다 신뢰할 수 있는 시스템을 완성한다.

안드로이드 환경의 다중생체인식 기술을 응용한 인증 성능 개선 연구 (Enhancement of Authentication Performance based on Multimodal Biometrics for Android Platform)

  • 최성필;정강훈;문현준
    • 한국멀티미디어학회논문지
    • /
    • 제16권3호
    • /
    • pp.302-308
    • /
    • 2013
  • 본 논문은 모바일 환경에서의 다중생체인식을 통한 개인인증 시나리오에서 false acceptance rate (FAR)가 향상된 시스템을 제안한다. 다중생체인식을 위하여 얼굴인식과 화자인식을 선택하였으며, 시스템의 인식 시나리오는 다음을 따른다. 얼굴인식을 위하여 Modified census transform (MCT) 기반의 얼굴검출과 k-means 클러스터 분석 (cluster analysis) 알고리즘 기반의 눈 검출을 통해 얼굴영역 전처리를 수행하고, principal component analysis (PCA) 기반의 얼굴인증 시스템을 구현한다. 화자인식을 위하여 음성의 끝점추출과 Mel frequency cepstral coefficient (MFCC) 특징을 추출하고, dynamic time warping (DTW) 기반의 화자 인증 시스템을 구현한다. 그리고 각각의 생체인식을 본 논문에서 제안된 방법을 기반으로 융합하여 인식률을 향상시킨다. 본 논문의 실험은 Android 환경에서 수행하였으며, 구현한 다중생체인식 시스템과 단일생체인식 시스템과의 FAR을 비교하였다. 단일 얼굴인식의 FAR은 4.6%, 단일 화자인식의 FAR은 6.7%로 각각 나타났으며, 제안된 다중생체인식 시스템의 FAR은 1.8%로 크게 감소하였다.