• Title/Summary/Keyword: multilayered viscoelastic soil

Search Result 1, Processing Time 0.015 seconds

Dynamic response of vertically loaded rectangular barrettes in multilayered viscoelastic soil

  • Cao, Geng;Zhu, Ming X.;Gong, Wei M.;Wang, Xiao;Dai, Guo L.
    • Geomechanics and Engineering
    • /
    • v.23 no.3
    • /
    • pp.275-287
    • /
    • 2020
  • Rectangular barrettes have been increasingly used as foundations for many infrastructure projects, but the vertical vibration of a barrette has been rarely addressed theoretically. This paper presents an analysis method of dynamic response for a rectangular barrette subjected to a time-harmonic vertical force with the aid of a modified Vlasov foundation model in multilayered viscoelastic soil. The barrette-soil system is modeled as a continuum, the vertical continuous displacement model for the barrette and soil is proposed. The governing equations of the barrette-soil system and the boundary conditions are obtained and the vertical shaft resistance of barrette is established by employing Hamilton's principle for the system and thin layer element, respectively. The physical meaning of the governing equations and shaft resistance is interpreted. The iterative solution algorithm flow is proposed to obtain the dynamic response of barrette. Good agreement of the analysis and comparison confirms the correctness of the present solution. A parametric study is further used to demonstrate the effects of cross section aspect ratio of barrettes, depth of soil column, and module ratio of substratum to the upper soil layers on the complex barrette-head stiffness and the resistance stiffness.