• Title/Summary/Keyword: multilayer perceptron (MLP)

Search Result 135, Processing Time 0.028 seconds

Performance comparison of SVM and neural networks for large-set classification problems (대용량 분류에서 SVM과 신경망의 성능 비교)

  • Lee Jin-Seon;Kim Young-Won;Oh Il-Seok
    • The KIPS Transactions:PartB
    • /
    • v.12B no.1 s.97
    • /
    • pp.25-30
    • /
    • 2005
  • In this paper, we analyzed and compared the performances of modular FFMLP(feedforward multilayer perceptron) and SVUT(Support Vector Machine) for the large-set classification problems. Overall, SVM dominated modular FFMLP in the correct recognition rate and other aspects Additionally, the recognition rate of SVM degraded more slowly than neural network as the number of classes increases. The trend of the recognition rates depending on the rejection rate has been analyzed. The parameter set of SVM(kernel functions and related variables) has been identified for the large-set classification problems.

A Genetic Algorithm and Support Vector Regression based Hybrid Cost Estimation Model for Feature-based Plastic Injection Products (특징기반 플라스틱 사출제품을 위한 유전자 알고리즘과 Support Vector Regression 기반의 하이브리드 비용 평가 모델)

  • Seo, Kwang-Kyu
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.3
    • /
    • pp.269-276
    • /
    • 2012
  • 플라스틱 사출 제품은 다양한 가전제품과 하이테크 제품에 널리 사용되고 있다. 그러나 현재의 치열한 경쟁적 비즈니스 환경에서 플라스틱 사출 제품 제조업자들은 고객을 만족시키면서 경쟁력을 얻기 위하여 다른 경쟁자들보다 먼저 새로운 제품을 시장에 출시하고 신제품의 개발기간을 줄이기 위한 노력을 할 여유가 부족하다. 따라서 무한경쟁의 시장에서 살아남기 위해서는 제조업자들은 시장 마켓 점유를 빠르게 올리는 것과 동시에 제품의 가격 경쟁력을 가져야 한다. 특징기반 모델의 구조는 현재 연구에서 3D 제작 도구로서 일반적으로 적용되고 있으며 신제품 개발 엔지니어들이 새로운 제품의 개념을 개발하는 데에도 널리 사용되고 있다. 본 연구에서는 특징기반 플라스틱 사출제품을 위한 유전자 알고리즘과 Support Vector Regression (SVR) 기반의 새로운 하이브리드 비용 평가 모델을 제안한다. 제안하는 하이브리드 모델은 기존의 플라스틱 사출제품의 비용평가절차와 계산을 위해 필요로 하는 변수들을 극적으로 간단하게 하고 줄일 수 있다. 사례연구에서는 제안하는 하이브리드 모델과 기존의 multilayer perceptron networks (MLP) 및 pure SVR과의 비교분석을 통하여 제안모델이 플라스틱 사출 제품의 개발단계에서의 비용평가문제를 해결하는데 효율성과 효과성이 있음을 입증한다.

Statistical RBF Network with Applications to an Expert System for Characterizing Diabetes Mellitus

  • Om, Kyong-Sik;Kim, Hee-Chan;Min, Byoung-Goo;Shin, Chan-So;Lee, Hong-Kyu
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.3
    • /
    • pp.355-365
    • /
    • 1998
  • The purposes of this study are to propose a network for the characterizing of the input data and to show how to design predictive neural net재가 expert system which doesn't need previous knowledge base. We derived this network from the radial basis function networks(RBFN), and named it as a statistical EBFN. The proposed network can replace the statistical methods for analyzing dynamic relations between target disease and other parameters in medical studies. We compared statistical RBFN with the probabilistic neural network(PNN) and fuzzy logic(FL). And we testified our method in the diabetes prediction and compared our method with the well-known multilayer perceptron(MLP) neural network one, and showed good performance of our network. At last, we developed the diabetes prediction expert system based on the proposed statistical RBFN without previous knowledge base. Not only the applicability of the characterizing of parameters related to diabetes and construction of the diabetes prediction expert system but also wide applicabilities has the proposed statistical RBFN to other similar problems.

  • PDF

An advanced PRPD Pattern recognition method considering frequency analysis of the PD signals detected in GIS (PD 신호의 주파수 분석이 고려된 GIS 절연 결함 분류를 위한 Advanced PRPD 패턴인식)

  • Park, Jae-Hong;Jung, Seung-Yong;Ryu, Chel-Hwi;Kim, Young-Hong;Lee, Young-Jo;Lim, Yun-Sok;Koo, Ja-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1443-1444
    • /
    • 2007
  • 지속적으로 증가되는 전기에너지 공급의 신뢰성을 높이기 위하여 전력설비 주요 사고 원인인 부분방전(PD : Partial Discharge)을 검출하고 결함원의 패턴인식 방법의 개발 필요성 날로 증가되고 있다. 본 논문은 부분방전의 패턴인식 확률을 높이기 위하여 검출된 부분방전의 주파수 분석을 이용하여 Conventional PRPD Analysis 방법의 결함 판독확률을 향상시키기 위하여 Advanced PRPD를 제안 한다. 이를 위하여, GIS(Gas Insulated Switchgear)의 주요 사고원인으로 인식되어 있는 결함들을 인위적으로 제작 후 삽입하여 부분방전을 발생시켜 자체 설계 개발된 UHF 내장형 센서를 이용하여 검출하였다. 새로이 제안하는 방법과 기존의 PRPD 방법의 인식률을 상호 비교하기 위하여, 두 가지 그룹을, 즉, 기존의 방법에 의한 것과 부분방전의 주파수 분석이 포함된 방법에 의한 데이터그룹을 구축하고 학습방법은 동일한 인공신경망 MLP (Multilayer Perceptron)를 이용하여 인식률과 학습시간을 동시에 비교하였다. 상호 비교 결과에 의하면, 후자의 방법이 인식확률 뿐만아니라 학습시간도 좋은 결과가 나타났다.

  • PDF

Precise prediction of radiation interaction position in plastic rod scintillators using a fast and simple technique: Artificial neural network

  • Peyvandi, R. Gholipour;rad, S.Z. Islami
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1154-1159
    • /
    • 2018
  • Precise prediction of the radiation interaction position in scintillators plays an important role in medical and industrial imaging systems. In this research, the incident position of the gamma rays was predicted precisely in a plastic rod scintillator by using attenuation technique and multilayer perceptron (MLP) neural network, for the first time. Also, this procedure was performed using nonlinear regression (NLR) method. The experimental setup is comprised of a plastic rod scintillator (BC400) coupled with two PMTs at two sides, a $^{60}Co$ gamma source and two counters that record count rates. Using two proposed techniques (ANN and NLR), the radiation interaction position was predicted in a plastic rod scintillator with a mean relative error percentage less than 4.6% and 14.6%, respectively. The mean absolute error was measured less than 2.5 and 5.5. The correlation coefficient was calculated 0.998 and 0.984, respectively. Also, the ANN technique was confirmed by leave-one-out (LOO) method with 1% error. These results presented the superiority of the ANN method in comparison with NLR and the other methods. The technique and set up used are simpler and faster than other the previous position sensitive detectors. Thus, the time, cost and shielding and electronics requirements are minimized and optimized.

A Remote Sensing Scene Classification Model Based on EfficientNetV2L Deep Neural Networks

  • Aljabri, Atif A.;Alshanqiti, Abdullah;Alkhodre, Ahmad B.;Alzahem, Ayyub;Hagag, Ahmed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.406-412
    • /
    • 2022
  • Scene classification of very high-resolution (VHR) imagery can attribute semantics to land cover in a variety of domains. Real-world application requirements have not been addressed by conventional techniques for remote sensing image classification. Recent research has demonstrated that deep convolutional neural networks (CNNs) are effective at extracting features due to their strong feature extraction capabilities. In order to improve classification performance, these approaches rely primarily on semantic information. Since the abstract and global semantic information makes it difficult for the network to correctly classify scene images with similar structures and high interclass similarity, it achieves a low classification accuracy. We propose a VHR remote sensing image classification model that uses extracts the global feature from the original VHR image using an EfficientNet-V2L CNN pre-trained to detect similar classes. The image is then classified using a multilayer perceptron (MLP). This method was evaluated using two benchmark remote sensing datasets: the 21-class UC Merced, and the 38-class PatternNet. As compared to other state-of-the-art models, the proposed model significantly improves performance.

A Study on Evaluation of e-learners' Concentration by using Machine Learning (머신러닝을 이용한 이러닝 학습자 집중도 평가 연구)

  • Jeong, Young-Sang;Joo, Min-Sung;Cho, Nam-Wook
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.4
    • /
    • pp.67-75
    • /
    • 2022
  • Recently, e-learning has been attracting significant attention due to COVID-19. However, while e-learning has many advantages, it has disadvantages as well. One of the main disadvantages of e-learning is that it is difficult for teachers to continuously and systematically monitor learners. Although services such as personalized e-learning are provided to compensate for the shortcoming, systematic monitoring of learners' concentration is insufficient. This study suggests a method to evaluate the learner's concentration by applying machine learning techniques. In this study, emotion and gaze data were extracted from 184 videos of 92 participants. First, the learners' concentration was labeled by experts. Then, statistical-based status indicators were preprocessed from the data. Random Forests (RF), Support Vector Machines (SVMs), Multilayer Perceptron (MLP), and an ensemble model have been used in the experiment. Long Short-Term Memory (LSTM) has also been used for comparison. As a result, it was possible to predict e-learners' concentration with an accuracy of 90.54%. This study is expected to improve learners' immersion by providing a customized educational curriculum according to the learner's concentration level.

Research of the crack problem of a functionally graded layer

  • Murat Yaylaci;Ecren Uzun Yaylaci;Muhittin Turan;Mehmet Emin Ozdemir;Sevval Ozturk;Sevil Ay
    • Steel and Composite Structures
    • /
    • v.50 no.1
    • /
    • pp.77-87
    • /
    • 2024
  • In this study, the two-dimensional crack problem was investigated by using the finite element method (FEM)-based ANSYS package program and the artificial neural network (ANN)-based multilayer perceptron (MLP) method. For this purpose, a half-infinite functionally graded (FG) layer with a crack pressed through two rigid blocks was analyzed using FEM and ANN. Mass forces and friction were neglected in the solution. To control the validity of the crack problem model exercised, the acquired results were compared with a study in the literature. In addition, FEM and ANN results were checked using Root Mean Square Error (RMSE) and coefficient of determination (R2), and a well agreement was found. Numerical solutions were made considering different geometric parameters and material properties. The stress intensity factor (SIF) was examined for these values, and the results were presented. Consequently, it is concluded that the considered non-dimensional quantities have a noteworthy influence on the SIF. Also FEM and ANN can be logical alternative methods to time-consuming analytical solutions if used correctly.

Application of Particle Swarm Optimization(PSO) for Prediction of Water Quality in Agricultural Reservoirs of Korea (농업용 저수지의 수질 예측 모델을 위한 PSO(Particle Swarm Optimization) 알고리즘의 적용)

  • Kwon, Yong-Su;Bae, Mi-Jung;Hwang, Soon-Jin;Park, Young-Seuk
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.spc
    • /
    • pp.11-20
    • /
    • 2008
  • In this study, we applied a Particle Swarm Optimization (PSO) algorithm to predict the changes of chlorophyll-${\alpha}$ related to environmental factors in agricultural reservoirs in Korean national scale. Data were obtained from water quality monitoring networks of reservoirs operated by the Ministry of Agriculture and Forestry and the Ministry of Environment of Korea. From the database of the monitoring networks, 290 reservoirs were chosen with variables such as chlorophyll-${\alpha}$ and 13 environmental factors (COD, TN, TP, Altitude, Bank height, etc.) measured in 2002. Based on Carlson's trophic status index, reservoirs were divided into five groups, and most agricultural reservoirs $(TSI_{CHL}\;64.1%,\;TSI_{TP}\;75.5%)$ were in the eutrophic states. The groups were discriminated with environmental variables, showing that COD, DO, and TP were important factors to determine the trophic states. MLP-PSO (Multilayer perceptron (MLP) with PSO for the optimization) was applied for the prediction of chlorophyll-${\alpha}$ with environment factors, and showed high predictability (r=0.83, p<0.001). Additionally, the sensitivity analysis of the MLP-PSO model showed that COD had the strongest positive effects on the concentration of chlorophyll-${\alpha}$, and followed by TP, TN, DO, whereas altitude and bank height had negative effects on the concentration of chlorophyll-${\alpha}$.

Evaluation of Environmental Factors to Determine the Distribution of Functional Feeding Groups of Benthic Macroinvertebrates Using an Artificial Neural Network

  • Park, Young-Seuk;Lek, Sovan;Chon, Tae-Soo;Verdonschot, Piet F.M.
    • Journal of Ecology and Environment
    • /
    • v.31 no.3
    • /
    • pp.233-241
    • /
    • 2008
  • Functional feeding groups (FFGs) of benthic macroinvertebrates are guilds of invertebrate taxa that obtain food in similar ways, regardless of their taxonomic affinities. They can represent a heterogeneous assemblage of benthic fauna and may indicate disturbances of their habitats. The proportion of different groups can change in response to disturbances that affect the food base of the system, thereby offering a means of assessing disruption of ecosystem functioning. In this study, we used benthic macroinvertebrate communities collected at 650 sites of 23 different water types in the province of Overijssel, The Netherlands. Physical and chemical environmental factors were measured at each sampling site. Each taxon was assigned to its corresponding FFG based on its food resources. A multilayer perceptron (MLP) using a backpropagation algorithm, a supervised artificial neural network, was applied to evaluate the influence of environmental variables to the FFGs of benthic macroinvertebrates through a sensitivity analysis. In the evaluation of input variables, the sensitivity analysis with partial derivatives demonstrates the relative importance of influential environmental variables on the FFG, showing that different variables influence the FFG in various ways. Collector-filterers and shredders were mainly influenced by $Ca^{2+}$ and width of the streams, and scrapers were influenced mostly with $Ca^{2+}$ and depth, and predators were by depth and pH. $Ca^{2+}$ and depth displayed relatively high influence on all four FFGs, while some variables such as pH, %gravel, %silt, and %bank affected specific groups. This approach can help to characterize community structure and to ecologically assess target ecosystems.