• Title/Summary/Keyword: multicast routing

Search Result 264, Processing Time 0.03 seconds

A Cluster-based QoS Multicast Routing Protocol for Scalable MANETs

  • Qabajeh, Mohammad M.;Adballa, Aisha H.;Khalifa, Othman O.;Qabajeh, Liana K.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.4
    • /
    • pp.741-762
    • /
    • 2011
  • Recently, multicast routing protocols become increasingly important aspect in Mobile Ad hoc Networks (MANETs), as they effectively manage group communications. Meanwhile, multimedia and real-time applications are becoming essential need for users of MANET. Thus it is necessary to design efficient and effective Quality of Service (QoS) multicast routing strategies. In this paper, we address the scalability problem of multicast routing protocols to support QoS over MANETs. In particular, we introduce a Position-Based QoS Multicast Routing Protocol (PBQMRP). Basically, the protocol based on dividing the network area into virtual hexagonal cells. Then, the location information is exploited to perform efficient and scalable route discovery. In comparison with other existing QoS multicast routing protocols, PBQMRP incurs less control packets by eliminating network flooding behavior. Through simulation, the efficiency and scalability of PBQMRP are evaluated and compared with the well-known On-Demand Multicast Routing Protocol (ODMRP). Simulation results justify that our protocol has better performance, less control overhead and higher scalability.

Efficient Multicast Tree Construction in Wireless Mesh Networks

  • Nargesi, Amir-Abbas;Bag-Mohammadi, Mozafar
    • Journal of Communications and Networks
    • /
    • v.16 no.6
    • /
    • pp.613-619
    • /
    • 2014
  • Multicast routing algorithms designed for wireline networks are not suitable for wireless environments since they cannot efficiently exploit the inherent characteristics of wireless networks such as the broadcast advantage. There are many routing protocols trying to use these advantages to decrease the number of required transmissions or increase the reception probability of data (e.g., opportunistic routing).Reducing the number of transmissions in a multicast tree directly decreases the bandwidth consumption and interference and increases the overall throughput of the network. In this paper, we introduce a distributed multicast routing protocol for wireless mesh networks called NCast which take into account the data delivery delay and path length when constructing the tree. Furthermore, it effectively uses wireless broadcast advantage to decrease the number of forwarding nodes dynamically when a new receiver joins the tree.Our simulation results show that NCast improves network throughput, data delivery ratio and data delivery delay in comparison with on demand multicast routing protocol. It is also comparable with multichannel multicast even though it does not use channeling technique which eliminates the interference inherently.

Virtual Euc1idean Point based Multicast routing scheme in Underwater Acoustic sensor networks (수중 센서 네트워크에서 가상의 유클리디언 포인트를 이용한 멀티캐스트 전송기법)

  • Kim, Tae-Sung;Park, Kyung-Min;Kim, Young-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7B
    • /
    • pp.886-891
    • /
    • 2011
  • Multicast has been a key routing service for efficient data dissemination in underwater acoustic sensor networks. In sensor networks, there are several multicast routing protocol which reflects sensor network nature. However, existing routing scheme was not targeted at underwater acoustic sensor networks which is hard to provide battery continually. Therefore, a specialized routing algorithm is essential for acoustic sensor networks. In this paper, we propose angle aided multicast routing algorithm for decreasing routing computation complexity, including virtual Euclidean Steiner point. Simulation results show better performance than exist routing Position Based Multicast, Geographic Multicast Routing. such as low computation capability and limited power consumption.

Position-Based Multicast Routing in Mobile Ad hoc Networks: An Analytical Study

  • Qabajeh, Mohammad M.;Adballa, Aisha H.;Khalifa, Othman O.;Qabajeh, Liana K.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.6
    • /
    • pp.1586-1605
    • /
    • 2012
  • With the prevalence of multimedia applications and the potential commercial usage of Mobile Ad hoc Networks (MANETs) in group communications, Quality of Service (QoS) support became a key requirement. Recently, some researchers studied QoS multicast issues in MANETs. Most of the existing QoS multicast routing protocols are designed with flat topology and small networks in mind. In this paper, we investigate the scalability problem of these routing protocols. In particular, a Position-Based QoS Multicast Routing Protocol (PBQMRP) has been developed. PBQMRP builds a source multicast tree guided by the geographic information of the mobile nodes, which helps in achieving more efficient multicast delivery. This protocol depends on the location information of the multicast members which is obtained using a location service algorithm. A virtual backbone structure has been proposed to perform this location service with minimum overhead and this structure is utilized to provide efficient packet transmissions in a dynamic mobile Ad hoc network environment. The performance of PBQMRP is evaluated by performing both quantitative analysis and extensive simulations. The results show that the used virtual clustering is very useful in improving scalability and outperforms other clustering schemes. Compared to On-Demand Multicast Routing Protocol (ODMRP), PBQMRP achieves competing packet delivery ratio and significantly lower control overhead.

Multi-Objective Micro-Genetic Algorithm for Multicast Routing (멀티캐스트 라우팅을 위한 다목적 마이크로-유전자 알고리즘)

  • Jun, Sung-Hwa;Han, Chi-Geun
    • IE interfaces
    • /
    • v.20 no.4
    • /
    • pp.504-514
    • /
    • 2007
  • The multicast routing problem lies in the composition of a multicast routing tree including a source node and multiple destinations. There is a trade-off relationship between cost and delay, and the multicast routing problem of optimizing these two conditions at the same time is a difficult problem to solve and it belongs to a multi-objective optimization problem (MOOP). A multi-objective genetic algorithm (MOGA) is efficient to solve MOOP. A micro-genetic algorithm(${\mu}GA$) is a genetic algorithm with a very small population and a reinitialization process, and it is faster than a simple genetic algorithm (SGA). We propose a multi-objective micro-genetic algorithm (MO${\mu}GA$) that combines a MOGA and a ${\mu}GA$ to find optimal solutions (Pareto optimal solutions) of multicast routing problems. Computational results of a MO${\mu}GA$ show fast convergence and give better solutions for the same amount of computation than a MOGA.

Hop-constrained multicast route packing with bandwidth reservation

  • Gang Jang Ha;Park Seong Su
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.402-408
    • /
    • 2002
  • Multicast technology allows the transmission of data from one source node to a selected group of destination nodes. Multicast routes typically use trees, called multicast routing trees, to minimize resource usage such as cost and bandwidth by sharing links. Moreover, the quality of service (QoS) is satisfied by distributing data along a path haying no more than a given number of arcs between the root node of a session and a terminal node of it in the routing tree. Thus, a multicast routing tree for a session can be represented as a hop constrained Steiner tree. In this paper, we consider the hop-constrained multicast route packing problem with bandwidth reservation. Given a set of multicast sessions, each of which has a hop limit constraint and a required bandwidth, the problem is to determine a set of multicast routing trees in an arc-capacitated network to minimize cost. We propose an integer programming formulation of the problem and an algorithm to solve it. An efficient column generation technique to solve the linear programming relaxation is proposed, and a modified cover inequality is used to strengthen the integer programming formulation.

  • PDF

A Genetic Algorithm for Cluster Based Multicast Routing Problem (클러스터 기반의 멀티캐스트 라우팅 문제 해법을 위한 유전자 알고리즘)

  • 강명주
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.3
    • /
    • pp.150-155
    • /
    • 2003
  • Multicasting, the transmission of data to a group, can be solved from constructing multicast tree, that is, the whole network is partitioned to some clusters and the clusters are constructed by multicast tree. This paper proposes an algorithm that reduces the multicast routing costs using a clustering method. Multicast tree is constructed by minimum-cost Steiner tree. It is important to solve the mnimum-cost Steiner tree problem in the multicast routing problems. Hence, this paper proposes a genetic algorithm for multicast routing problems using clustering method.

  • PDF

Lightweight Multicast Routing Based on Stable Core for MANETs

  • Al-Hemyari, Abdulmalek;Ismail, Mahamod;Hassan, Rosilah;Saeed, Sabri
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4411-4431
    • /
    • 2014
  • Mobile ad hoc networks (MANETs) have recently gained increased interest due to the widespread use of smart mobile devices. Group communication applications, serving for better cooperation between subsets of business members, become more significant in the context of MANETs. Multicast routing mechanisms are very useful communication techniques for such group-oriented applications. This paper deals with multicast routing problems in terms of stability and scalability, using the concept of stable core. We propose LMRSC (Lightweight Multicast Routing Based on Stable Core), a lightweight multicast routing technique for MANETs, in order to avoid periodic flooding of the source messages throughout the network, and to increase the duration of multicast routes. LMRSC establishes and maintains mesh architecture for each multicast group member by dividing the network into several zones, where each zone elects the most stable node as its core. Node residual energy and node velocity are used to calculate the node stability factor. The proposed algorithm is simulated by using NS-2 simulation, and is compared with other multicast routing mechanisms: ODMRP and PUMA. Packet delivery ratio, multicast route lifetime, and control packet overhead are used as performance metrics. These metrics are measured by gradual increase of the node mobility, the number of sources, the group size and the number of groups. The simulation performance results indicate that the proposed algorithm outperforms other mechanisms in terms of routes stability and network density.

Understanding Channel-diversity Oriented Routing Metrics for Multicast in Wireless Mesh Networks

  • Gao, Hui;Nam, Ji-seung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.418-420
    • /
    • 2013
  • Issues on design of routing scheme and routing metric for multicast in multi-channel multi-radio (MCMR) wireless mesh networks (WMNs) are discussed. Emphasis is placed on channel-diversity oriented routing metrics. From case study the conclusion to be drawn is that the key for design of channel-diversity oriented routing metrics is how to construct an optimization function to quantify interdependence between channel assignment and multicast routing throughput.

Performance Comparison of Mobile Ad Hoc Multicast Routing Protocols (모바일 애드 혹 멀티캐스트 라우팅 프로토콜 성능분석)

  • Lee, Joo-Han;Cho, Jin-Woong;Lee, Jang-Yeon;Lee, Hyeon-Seok;Park, Sung-Kwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.5
    • /
    • pp.173-179
    • /
    • 2008
  • An ad hoc network is multi-hop wireledss formed by mobile node without infrastructure. Due to the mobility of nodes in mobile ad hoc networks, the topology of network changes frequently. In this environments, multicast protocols are faced with the challenge of producing multi-hop routes and limitation of bandwidth. We compare the performance of two multicast routing protocols for mobile ad hoc networks - Serial Multiple Disjoint Tree Multicast Routing Protocol (Serial MDTMR) and Adaptive Core Multicast Routing Protocol (ACMRP). The simulator is implemented with GloMoSim.

  • PDF