• Title/Summary/Keyword: multibody dynamic

Search Result 294, Processing Time 0.023 seconds

A recursive multibody model of a tracked vehicle and its interaction with flexible ground

  • Han, Ray P.S.;Sander, Brian S.;Mao, S.G.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.2
    • /
    • pp.133-149
    • /
    • 2001
  • A high-fidelity model of a tracked vehicle traversing a flexible ground terrain with a varying profile is presented here. In this work, we employed a recursive formulation to model the track subsystem. This method yields a minimal set of coordinates and hence, computationally more efficient than conventional approaches. Also, in the vehicle subsystem, the undercarriage frame is assumed to be connected to the chassis by a revolute joint and a spring-damper unit. This increase in system mobility makes the model more realistic. To capture the vehicle-ground interaction, a Winkler-type foundation with springs-dampers is used. Simulation runs of the integrated tracked vehicle system for vibrations for four varying ground profiles are provided.

Dynamic Analysis of a Moving Vehicle on Flexible beam Structure (II) : Application

  • Park, Tae-Won;Park, Chan-Jong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.64-71
    • /
    • 2002
  • Recently, mechanical systems such as a high-speed vehicles and railway trains moving on flexible beam structures have become a very important issue to consider. Using the general approach proposed in the first part of this paper, it is possible to predict motion of the constrained mechanical system and the elastic structure, with various kinds of foundation supporting conditions. Combined differential-algebraic equation of motion derived from both multibody dynamics theory and finite element method can be analyzed numerically using a generalized coordinate partitioning algorithm. To verify the validity of this approach, results from the simply supported elastic beam subjected to a moving load are compared with the exact solution from a reference. Finally, parametric study is conducted for a moving vehicle model on a simply supported 3-span bridge.

Dynamics of Track/Wheel Systems on High-Speed Vehicles

  • Kato Isamu;Terumichi Yoshiaki;Adachi Masahito;Sogabe Kiyoshi
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.328-335
    • /
    • 2005
  • For high speed railway vehicles, we consider a vibration of flexible track/wheel system. It is very important to deal with the complex phenomena of high-speed vehicles that can be occurred in the vertical vibration of the system. From a viewpoint of multibody dynamics, this kind of problem needs accurate analysis because the system includes mutual dynamic behaviors of rigid body and flexible body. The simulation technique for the complex problems is also discussed. We consider the high-speed translation, rail elasticity, elastic supports under the rail and contact rigidity. Eigen value analysis is also completed to verify the mechanism of the coupled vertical vibration of the system.

Multibody Dynamics of Closed, Open, and Switching Loop Mechanical Systems

  • Youm, Youn-Gil
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.237-254
    • /
    • 2005
  • The vast mechanical systems could be classified as closed loop system, open loop system and open & closed (switching) system. In the closed loop system, the kinematics and dynamics of 3-D mechanisms will be reviewed and closed form solutions using the direction cosine matrix method and reflection transformation method will be introduced. In the open loop system, kinematic & dynamic analysis methods regarding the redundant system which has more degrees of freedom in joint space than those of task space are reviewed and discussed. Finally, switching system which changes its phase between closed and open loop motion is investigated with the principle of dynamical balance. Among switching systems, the human gait in biomechanics and humanoid in robotics are presented.

Kinematic Design Sensitivity Analysis of Suspension systems Using Direct differentiation (직접미분법을 이용한 현가장치의 기구학적 민감도해석)

  • 민현기;탁태오;이장무
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.38-48
    • /
    • 1997
  • A method for performing kinematic design sensitivity analysis of vehicle suspension systems is presented. For modeling of vehicle suspensions, the multibody dynamic formulation is adopted, where suspensions are assumed as combination of rigid bodies and ideal frictionless joints. In a relative joint coordinate setting, kinematic constraint equations are obtained by imposing cut-joints that transform closed-loop shape suspension systems into open-loop systems. By directly differentiating the constraint equations with respect to kinematic design variables, such as length of bodies, notion axis, etc., sensitivity equations are derived. By solving the sensitivity equations, sensitivity of static design factors that can be used for design improvement, can be obtained. The validity and usefulness of the method are demonstrated through an example where kinematic sensitivity analysis of a MacPherson strut suspension of performed.

  • PDF

An Efficient Multibody Dynamic Algorithm Using Independent Coordinates Set and Modified Velocity Transformation Method (수정된 속도변환기법과 독립좌표를 사용한 효율적인 다물체 동역학 알고리즘)

  • Kang, Sheen-Gil;Yoon, Yong-San
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.488-494
    • /
    • 2001
  • Many literatures, so far, have concentrated on approaches employing dependent coordinates set resulting in computational burden of constraint forces, which is needless in many cases. Some researchers developed methods to remove or calculate it efficiently. But systematic generation of the motion equation using independent coordinates set by Kane's equation is possible for any closed loop system. Independent velocity transformation method builds the smallest size of motion equation, but needs practically more complicated code implementation. In this study, dependent velocity matrix is systematically transformed into independent one using dependent-independent transformation matrix of each body group, and then motion equation free of constraint force is constructed. This method is compared with the other approach by counting the number of multiplications for car model with 15 d.o.f..

  • PDF

Multibody Dynamics Formulation based on Relative Cartesian Coordinates for Subsystem Dynamic Analysis (부분 시스템 해석을 위한 상대 직교 좌표를 이용한 다물체 동역학 공식)

  • Kim, Sung-Soo;Song, Kum-Jung;Huh, Jae-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.899-904
    • /
    • 2004
  • Multibody dynamics formulation has been developed based on relative cartesian coordinates for subsystem analysis. Relative cartesian coordinates are defined with respect to a reference body of a subsystem. Relative cartesian formulation inherits the same merits of absolute cartesian formulation, such as generality and easy implementation. Two methods have been applied. One is Largrange Multiplier Elimination method and the other is independent coordinate method. A 1/4 car simulation has been carried out to verify the formulations. Since both methods provide identical results, it proves the validity of the formulation.

  • PDF

Three Dimensional Modeling and Inverse Dynamic Analysis of An Excavator (굴삭기의 3차원 모델링 및 역동역학 해석)

  • 김외조;유완석;이만형;윤경화
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2043-2050
    • /
    • 1993
  • This paper presents a three dimensional modeling and dynamic analysis of a hydraulic excavator. An excavator composed of a boom, a bucket, two boom cylinders, an arm cylinder, and a bucket cylinder is used for the analysis. Each cylinder is modeled to two separate bodies linked by a translational joint. Judging from the actual degrees of freedom of the excavator, proper kinematic joints are selected to exclude redundant constraints in the modeling. In order to find the reaction forces at kinematic joints during operations, inverse dynamic analysis is carried out. Dynamic analysis is also carried out to verify the results from inverse dynamic analysis. The DADS program is used for analysis, with proper modification of the DADS user routine according to various motions.

Structural Optimization of the Pelvis in a Humanoid Considering Dynamic Characteristics (동적 특성을 고려한 휴머노이드 펠비스의 구조최적설계)

  • Hong, Eul-Pyo;You, Bum-Jae;Kim, Chang-Hwan;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1344-1349
    • /
    • 2007
  • Biped humanoids maintain their stability through precise controls during locomotion or operation. Dynamic forces are applied to the humanoid structure during locomotion or operation. If the humanoid has weakness from a structural viewpoint, these forces cause severe deformation or vibration of the structure, which can make the humanoid unstable. In this research, a design scenario is proposed to design a robust humanoid structure under the dynamic loads. The pelvis part is selected for design practice. Multibody dynamics is adopted to calculate the dynamic loads and a structural optimization technique is employed to design the pelvis structures. Since it is extremely difficult directly consider the dynamic loads in the optimization process, equivalent static loads are evaluated from the dynamic loads and the design result are discussed.

  • PDF

Hybrid Position/Force Control for Dynamic Walking of Biped Walking Robot (이족보행로봇의 동적 보행을 위한 혼합 위치/힘 제어)

  • 박인규;김진걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.566-569
    • /
    • 2000
  • This hybrid position/force control for the dynamic walking of the biped robot is performed in this paper. After the biped robot was modeled with 14 degrees of freedom of the multibody dynamics, the equations of motion are constructed using velocity transformation technique. Then the inverse dynamic analysis is performed for determining the driving torques and the ground reaction forces. From this analysis, obtains the maximum ground contact force at the moment of contacting which act on the rear of the sole of swing leg and the distribution curve of the ground reaction. Because these maximum force and distribution type acts an important role to the stability of the whole dynamic walking, they are reduced and distributed smoothly by means of the trajectory of the modified ground reaction force. This new trajectory is used to the reference input for more stable dynamic walking of the whole walking region.

  • PDF