• Title/Summary/Keyword: multi-winding transformer

Search Result 38, Processing Time 0.026 seconds

Transformer Winding Modeling based on Multi-Conductor Transmission Line Model for Partial Discharge Study

  • Hosseini, Seyed Mohammad Hassan;Baravati, Peyman Rezaei
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.154-161
    • /
    • 2014
  • To study and locate partial discharge(PD) and analyze the transient state of power transformer, there is a need for a high frequency model of transformer winding and calculation of its parameters. Due to the high frequency nature of partial discharge phenomenon, there is a need for an accurate model for this frequency range. To attain this goal, a Multi-Conductor Transmission Line (MTL) model is used in this paper for modeling this transformer winding. In order that the MTL model can properly simulate the transformer behavior within a frequency range it is required that its parameters be accurately calculated. In this paper, all the basic parameters of this model are calculated by the use of Finite Element Method (FEM) for a 20kV winding of a distribution transformer. The comparison of the results obtained from this model with the obtained shape of the waves by the application of PD pulse to the winding in laboratory environment shows the validity and accuracy of this model.

High Efficiency Step-Down Flyback Converter Using Coaxial Cable Coupled-Inductor

  • Kim, Do-Hyun;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.214-222
    • /
    • 2013
  • This paper proposes a high efficiency step-down flyback converter using a coaxial-cable coupled-inductor which has a higher primary-secondary flux linkage than sandwich winding transformers. The structure of the two-winding coaxial cable transformer is described, and the coupling coefficient of the coaxial cable transformer and that of a sandwich winding transformer are compared. A circuit model of the proposed transformer is also obtained from the frequency-response curves of the secondary short-circuit and of the secondary open-circuit. Finally, the performance of the proposed transformer is validated by the experimental results from a 35W single-output flyback converter prototype. In addition, the proposed two-winding coaxial transformer is extended to a multiple winding coaxial application. For the performance evaluation of the extended version, 35W multi-output hardware prototype of the DC-DC flyback converter was tested.

Transformer Design Methodology to Improve Transfer Efficiency of Balancing Current in Active Cell Balancing Circuit using Multi-Winding Transformer (다중권선 변압기를 이용한 능동형 셀 밸런싱 회로에서 밸런싱 전류 전달 효율을 높이기 위한 변압기 설계 방안)

  • Lee, Sang-Jung;Kim, Myoung-Ho;Baek, Ju-Won;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.4
    • /
    • pp.247-255
    • /
    • 2018
  • This paper proposes a transformer design of a direct cell-to-cell active cell balancing circuit with a multi-winding transformer for battery management system (BMS) applications. The coupling coefficient of the multi-winding transformer and the output capacitance of MOSFETs significantly affect the balancing current transfer efficiency of the cell balancing operation. During the operation, the multi-winding transformer stores the energy charged in a specific source cell and subsequently transfers this energy to the target cell. However, the leakage inductance of the multi-winding transformer and the output capacitance of the MOSFET induce an abnormal energy transfer to the non-target cells, thereby degrading the transfer efficiency of the balancing current in each cell balancing operation. The impacts of the balancing current transfer efficiency deterioration are analyzed and a transformer design methodology that considers the coupling coefficient is proposed to enhance the transfer efficiency of the balancing current. The efficiency improvements resulting from the selection of an appropriate coupling coefficient are verified by conducting a simulation and experiment with a 1 W prototype cell balancing circuit.

A Study on Design of Multi-Winding Transformer for Poly Silicon Production using Heat Pipe (히트파이프를 이용한 폴리실리콘 제조용 다중권선 변압기 설계에 관한 연구)

  • Lee, Chun-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1626-1630
    • /
    • 2015
  • This paper reflected the Temperature test value and compare the Computational Fluid Dynamic analysis value on particular characteristics of the multi-winding transformer's cooling apparatus equipped by heat pipe with excellent heat transfer ability on design Particularly if you look at multi-winding transformers that supply high-quality Direct current power to silicon production apparatus, heat generation due to high current supply is excessive thus, an innovative cooling apparatus is required in particular for reduced size transformer.

Characteristics of a Continuous Disk Winding for High Voltage HTS Transformer (고전압 초전도 변압기용 연속 디스크 권선의 특성 해석)

  • Hwang, Young-In;Lee, Seung-Wook;Kim, Woo-Seok;Choi, Kyeong-Dal
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.295-300
    • /
    • 2007
  • High temperature superconducting (HTS) windings for an HTS transformer which have been developed have two kinds of type, one is the layer winding and the other is disk winding. The layer winding has adopted for an HTS power transformer so far because of the small AC losses of the HTS windings. The disk windings have surface of the HTS wire. We propose a new winding method for a high voltage HTS transformer which has advantages of both type of HTS windings, and we call it continuous disk winding. This new HTS winding consists of pile of HTS disk windings. The continuous disk winding was fabricated with multi-stacked HTS wires for dover HTS transformer. We can check the potential possibility from the characteristic test of the fabricated winding. The new type HTS windings can be applied to HTS power transformers, especially to the high voltage ones.

Cell Balancing Method in Flyback Converter without Cell Selection Switch of Multi-Winding Transformer

  • Kim, Jin-Woong;Ha, Jung-Ik
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.367-376
    • /
    • 2016
  • This paper presents a cell balancing method for a single switch flyback converter with a multi-winding transformer. The conventional method using a flyback converter with a multi-winding transformer is simple and easy to control, but the voltage of each secondary winding coil might be non-uniform because of the unequal effective turn-ratio. In particular, it is difficult to control the non-uniform effect using turn-ratios because secondary coil has a limited number of turns. The non-uniform secondary voltages disturb the cell balancing procedure and induce an unbalance in cell voltages. Individual cell control by adding a switch for each cell can reduce the undesirable effect. However, the circuit becomes bulky, resulting in additional loss. The proposed method here uses the conventional flyback converter with an adjustment made to the output filters of the cells, instead of the additional switch. The magnitude of voltage applied to a particular cell can be reduced or increased according to the adjusted filter and the selected switching frequency. An analysis of the conventional converter configuration and the filter design method reveals the possibility of adequate cell balancing control without any additional switch on the secondary side.

Research on a New 12-Pulse Step-Up and Step-Down Aviation Auto-Transformer Rectifier

  • Jiang, Fan;Ge, Hong-juan;Dong, Xiao-xu;Zhang, Lu
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.266-276
    • /
    • 2018
  • This paper presents a new step-up and step-down multi-pulse auto-transformer rectifier unit (ATRU) topology. This structure can achieve a wide range of output voltages, which solves the problem of auto-transformer output voltage being difficult to regulate. Adding middle taps to the primary winding and reasonably setting the number of auto-transformer windings, constituted two groups of three-phase output voltages with a $30^{\circ}$ phase difference. Multi-pulse output DC voltage is obtained after a three-phase output voltage across two rectifier bridges and inter-phase reactor. Thus, the output DC voltage is related to the number and configuration of the auto-transformer winding. In this paper, the relationship between the voltage ratio of the auto-transformer and the ratio of winding, input current and auto-transformer kilovoltampere rating are deduced and validated by simulations. On this basis, the output voltage range is optimized. An experiment on two different voltage ratio principle prototypes was carried out to verify the correctness of the analysis design.

Multi-Level Operation with Two-Level Converters through a Double-Delta Source Connected Transformer

  • Park, Yongsoon;Ohn, Sungjae;Sul, Seung-Ki
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1093-1099
    • /
    • 2014
  • This paper proposes a power conversion topology involving a multi-winding transformer and converters. The fundamental idea is described with circuit diagrams, and the voltage output of the proposed topology is analyzed mathematically. The effectiveness of the topology is discussed with test results from a small-scale power conversion system. When conventional hardware consisting of two-level converters and a transformer is employed, multi-level voltage outputs can be applied to the transformer windings by the proposed method.

A Study on Multi-Physics Analysis of High-Resolution Winding Type Resolver and Rotary Transformer (고정밀 권선형 레졸버의 변압부 및 레졸버 연동해석 연구)

  • Shin, Young-Chul;Kim, Ki-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.146-152
    • /
    • 2016
  • This paper describes a multi-physics analysis of a high resolution winding type resolver and rotary transformer using FEM (Finite Element Method). The rotary transformer boosts the input voltage to a high voltage which can be input into the rotor windings of the resolver. Through multi-physics models of the transformer and resolver, the characteristics of the output signals for the resolver system with high resolution can be derived. Moreover, the circuit model of the interface part between the transformer and resolver should be considered, because of the calculation of the input current to the resolver. The winding type resolver is composed of 32x and 1x stator windings for high resolution. Then, the output signals of the stator windings, which make sinusoidal SIN and COS waves with a $90^{\circ}$ phase difference, are verified.

Enhanced Switching Pattern to Improve Energy Transfer Efficiency of Active Cell Balancing Circuits Using Multi-winding Transformer (다중권선 변압기를 이용한 능동형 셀 밸런싱 회로의 에너지 전달 효율을 높이기 위한 향상된 스위칭 패턴)

  • Lee, Sang-Jung;Kim, Myoungho;Baek, Ju-Won;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.279-285
    • /
    • 2019
  • This study proposes an enhanced switching pattern that can improve energy transfer efficiency in an active cell-balancing circuit using a multiwinding transformer. This balancing circuit performs cell balancing by transferring energy stored in a specific cell with high energy to another cell containing low energy through a multiwinding transformer. The circuit operates in flyback and buck-boost modes in accordance with the energy transfer path. In the conventional flyback mode, the leakage inductance of the transformer and the stray inductance component of winding can transfer energy to an undesired path during the balancing operation. This case results in cell imbalance during the cell-balancing process, which reduces the energy transfer efficiency. An enhanced switching pattern that can effectively perform cell balancing by minimizing the amount of energy transferred to the nontarget cells due to the leakage inductance components in the flyback mode is proposed. Energy transfer efficiency and balancing speed can be significantly improved using the proposed switching pattern compared with that using the conventional switching pattern. The performance improvements are verified by experiments using a 1 W prototype cell-balancing circuit.