• Title/Summary/Keyword: multi-temporal method

Search Result 231, Processing Time 0.026 seconds

A Study on the Change Detection of Multi-temporal Data - A Case Study on the Urban Fringe in Daegu Metropolitan City - (대도시 주변지역의 토지이용변화 - 대구광역시를 중심으로 -)

  • 박인환;장갑수
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • The purpose of this article is to examine land use change in the fringe area of a metropolitan city through multi-temporal data analysis. Change detection has been regarded as one of the most important applications for utilization of remotely sensed imageries. Conventionally, two images were used for change detection, and Arithmetic calculators were generally used on the process. Meanwhile, multi-temporal change detection for a large number of images has been carried out. In this paper, a digital land-use map and three Landsat TM data were utilized for the multi-temporal change detection Each urban area map was extracted as a base map on the process of multi-temporal change detection. Each urban area map was converted to bit image by using boolean logic. Various urban change types could be obtained by stacking the urban area maps derived from the multi-temporal data using Geographic Information System(GIS). Urban change type map was created by using the process of piling up the bit images. Then the urban change type map was compared with each land cover map for the change detection. Dalseo-gu of Daegu city and Hwawon-eup of Dalsung-gun, the fringe area of Daegu Metropolitan city, were selected for the test area of this multi-temporal change detection method. The districts are adjacent to each other. Dalseo-gu has been developed for 30 yeais and so a large area of paddy land has been changed into a built-up area. Hwawon-eup, near by Dalseo-gu, has been influenced by the urbanization of Dalseo-gu. From 1972 to 1999, 3,507.9ha of agricultural area has been changed into other land uses, while 72.7ha of forest area has been altered. This agricultural area was designated as a 'Semi-agricultural area'by the National landuse Management Law. And it was easy for the preserved area to be changed into a built-up area once it would be included as urban area. Finally, the method of treatment and management of the preserved area needs to be changed to prevent the destruction of paddy land by urban sprawl on the urban fringe.

Atmospheric Correction Problems with Multi-Temporal High Spatial Resolution Images from Different Satellite Sensors

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.321-330
    • /
    • 2015
  • Atmospheric correction is an essential part in time-series analysis on biophysical parameters of surface features. In this study, we tried to examine possible problems in atmospheric correction of multitemporal High Spatial Resolution (HSR) images obtained from two different sensor systems. Three KOMPSAT-2 and two IKONOS-2 multispectral images were used. Three atmospheric correction methods were applied to derive surface reflectance: (1) Radiative Transfer (RT) - based absolute atmospheric correction method, (2) the Dark Object Subtraction (DOS) method, and (3) the Cosine Of the Uun zeniTh angle (COST) method. Atmospheric correction results were evaluated by comparing spectral reflectance values extracted from invariant targets and vegetation cover types. In overall, multi-temporal reflectance from five images obtained from January to December did not show consistent pattern in invariant targets and did not follow a typical profile of vegetation growth in forests and rice field. The multi-temporal reflectance values were different by sensor type and atmospheric correction methods. The inconsistent atmospheric correction results from these multi-temporal HSR images may be explained by several factors including unstable radiometric calibration coefficients for each sensor and wide range of sun and sensor geometry with the off-nadir viewing HSR images.

Application of Multi-periodic Harmonic Model for Classification of Multi-temporal Satellite Data: MODIS and GOCI Imagery

  • Jung, Myunghee;Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.573-587
    • /
    • 2019
  • A multi-temporal approach using remotely sensed time series data obtained over multiple years is a very useful method for monitoring land covers and land-cover changes. While spectral-based methods at any particular time limits the application utility due to instability of the quality of data obtained at that time, the approach based on the temporal profile can produce more accurate results since data is analyzed from a long-term perspective rather than on one point in time. In this study, a multi-temporal approach applying a multi-periodic harmonic model is proposed for classification of remotely sensed data. A harmonic model characterizes the seasonal variation of a time series by four parameters: average level, frequency, phase, and amplitude. The availability of high-quality data is very important for multi-temporal analysis.An satellite image usually have many unobserved data and bad-quality data due to the influence of observation environment and sensing system, which impede the analysis and might possibly produce inaccurate results. Harmonic analysis is also very useful for real-time data reconstruction. Multi-periodic harmonic model is applied to the reconstructed data to classify land covers and monitor land-cover change by tracking the temporal profiles. The proposed method is tested with the MODIS and GOCI NDVI time series over the Korean Peninsula for 5 years from 2012 to 2016. The results show that the multi-periodic harmonic model has a great potential for classification of land-cover types and monitoring of land-cover changes through characterizing annual temporal dynamics.

Monitoring Land Cover Changes in Nakdong River Basins Using Multi-temporal Landsat Imageries and LiDAR Data (다중시기에 촬영된 Landsat 영상과 LiDAR 자료를 활용한 낙동강 유역의 토지 피복 변화 모니터링)

  • Choung, Yun Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.242-242
    • /
    • 2015
  • Monitoring the land cover changes in Nakdong River Basins using the multi-temporal remote sensing datasets is necessary for preserving properties in the river basins and monitoring the environmental changes in the river basins after the 4 major river restoration project. This research aims to monitor the land cover changes using the multi-temporal Landsat imageries and the airborne topographic LiDAR data. Firstly, the river basin boundaries are determined by using the LiDAR data, and the multiple river basin imageries are generated from the multi-temporal Landsat imageries by using the river basin boundaries. Next the classification method is employed to identify the multiple land covers in the generated river basin imageries. Finally, monitoring the land cover changes is implemented by comparing the differences of the same clusters in the multi-temporal river basin imageries.

  • PDF

Temporal Fusion Transformers and Deep Learning Methods for Multi-Horizon Time Series Forecasting (Temporal Fusion Transformers와 심층 학습 방법을 사용한 다층 수평 시계열 데이터 분석)

  • Kim, InKyung;Kim, DaeHee;Lee, Jaekoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.2
    • /
    • pp.81-86
    • /
    • 2022
  • Given that time series are used in various fields, such as finance, IoT, and manufacturing, data analytical methods for accurate time-series forecasting can serve to increase operational efficiency. Among time-series analysis methods, multi-horizon forecasting provides a better understanding of data because it can extract meaningful statistics and other characteristics of the entire time-series. Furthermore, time-series data with exogenous information can be accurately predicted by using multi-horizon forecasting methods. However, traditional deep learning-based models for time-series do not account for the heterogeneity of inputs. We proposed an improved time-series predicting method, called the temporal fusion transformer method, which combines multi-horizon forecasting with interpretable insights into temporal dynamics. Various real-world data such as stock prices, fine dust concentrates and electricity consumption were considered in experiments. Experimental results showed that our temporal fusion transformer method has better time-series forecasting performance than existing models.

Change Detection of Land-cover from Multi-temporal KOMPSAT-1 EOC Imageries

  • Ha, Sung-Ryong;Ahn, Byung-Woon;Park, Sang-Young
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.1
    • /
    • pp.13-23
    • /
    • 2002
  • A radiometric correction method is developed to apply multi-temporal KOMPSAT-1 EOC satellite images for the detection of land-cover changes b\ulcorner recognizing changes in reflection pattern. Radiometric correction was carried out to eliminate the atmospheric effects that could interfere with the image properly of the satellite data acquired at different multi-times. Four invariant features of water, sand, paved road, and roofs of building are selected and a linear regression relationship among the control set images is used as a correction scheme. It is found that the utilization of panchromatic multi-temporal imagery requires the radiometric scene standardization process to correct radiometric errors that include atmospheric effects and digital image processing errors. Land-cover with specific change pattern such as paddy field is extracted by seasonal change recognition process.

Spatio-temporal Load Forecasting Considering Aggregation Features of Electricity Cells and Uncertainties in Input Variables

  • Zhao, Teng;Zhang, Yan;Chen, Haibo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.38-50
    • /
    • 2018
  • Spatio-temporal load forecasting (STLF) is a foundation for building the prediction-based power map, which could be a useful tool for the visualization and tendency assessment of urban energy application. Constructing one point-forecasting model for each electricity cell in the geographic space is possible; however, it is unadvisable and insufficient, considering the aggregation features of electricity cells and uncertainties in input variables. This paper presents a new STLF method, with a data-driven framework consisting of 3 subroutines: multi-level clustering of cells considering their aggregation features, load regression for each category of cells based on SLS-SVRNs (sparse least squares support vector regression networks), and interval forecasting of spatio-temporal load with sampled blind number. Take some area in Pudong, Shanghai as the region of study. Results of multi-level clustering show that electricity cells in the same category are clustered in geographic space to some extent, which reveals the spatial aggregation feature of cells. For cellular load regression, a comparison has been made with 3 other forecasting methods, indicating the higher accuracy of the proposed method in point-forecasting of spatio-temporal load. Furthermore, results of interval load forecasting demonstrate that the proposed prediction-interval construction method can effectively convey the uncertainties in input variables.

High Accuracy Classification Methods for Multi-Temporal Images

  • Hong, Sun Pyo;Jeon, Dong Keun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.1E
    • /
    • pp.3-8
    • /
    • 1997
  • Three new classification methods for multi temporal images are proposed. They are named as a likelihood addition method, a likelihood majority method and a Dempster-Shafer's rule method. Basic strategies using these methods are to calculate likelihoods for each temporal data and to combine obtained likelihoods for final classification. These three methods use different combining algorithms. From classification experiments, following results were obtained. The method based on Dempster-Shafer's rule of combination showed about 12% improvement of classification accuracies compared to a conventional method. This method needed about 16% more processing times than that of a conventional method. The other two proposed method showed 1% to 5% increase of classification accuracies. However processing times of these two proposed method showed 1% to 5% increase of classification accuracies. However processing times of these two methods are almost the same with that of a conventional method. Among the newly proposed three methods, the Dempster-Shafer's rule method showed the highest classification accuracies with more processing time than those of other methods.

  • PDF

Topographic Relief Mapping on Inter-tidal Mudflat in Kyongki Bay Area Using Infrared Bands of Multi-temporal Landsat TM Data

  • Lee, Kyu-Sung;Kim, Tae-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.3
    • /
    • pp.163-173
    • /
    • 2004
  • The objective of this study is to develop a method to generate micro-relief digital elevation model (DEM) data of the tidal mudflats using multi-temporal Landsat Thematic Mapper (TM) data. Field spectroscopy measurements showed that reflectance of the exposed mudflat, shallow turbid water, and normal coastal water varied by TM band wavelength. Two sets of DEM data of the inter-tidal mudflat area were generated by interpolating several waterlines extracted from multi-temporal TM data acquired at different sea levels. The waterline appearing in the near-infrared band was different from the one in the middle-infrared band. It was found that the waterline in TM band 4 image was the boundary between the shallow turbid water and normal coastal water and used as a second contour line having 50cm water depth in the study area. DEM data generated by using both TM bands 4 and 5 rendered more detailed topographic relief as compared to the one made by using TM band 5 alone.

Temporal Prediction Structure and Motion Estimation Method based on the Characteristic of the Motion Vectors (시간적 예측 구조와 움직임 벡터의 특성을 이용한 움직임 추정 기법)

  • Yoon, Hyo Sun;Kim, Mi Young
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.10
    • /
    • pp.1205-1215
    • /
    • 2015
  • Efficient multi-view coding techniques are needed to reduce the complexity of multi-view video which increases in proportion to the number of cameras. To reduce the complexity and maintain image quality and bit-rates, an motion estimation method and temporal prediction structure are proposed in this paper. The proposed motion estimation method exploits the characteristic of motion vector distribution and the motion direction and motion size of the block to place search points and decide the search patten adaptively. And the proposed prediction structure divides every GOP to decide the maximum index of hierarchical B layer and the number of pictures of each B layer. Experiment results show that the complexity reduction of the proposed temporal prediction structure and motion estimation method over hierarchical B pictures prediction structure and TZ search method which are used in JMVC(Joint Multi-view Video Coding) reference model can be up to 45∼70% while maintaining similar video quality and bit rates.