• 제목/요약/키워드: multi-temporal images

검색결과 214건 처리시간 0.025초

다중센서 고해상도 위성영상의 딥러닝 기반 영상매칭을 위한 학습자료 구성에 관한 연구 (A Study on Training Dataset Configuration for Deep Learning Based Image Matching of Multi-sensor VHR Satellite Images)

  • 강원빈;정민영;김용일
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1505-1514
    • /
    • 2022
  • 영상정합은 다시기 및 다중센서 고해상도 위성영상을 효과적으로 활용하기 위해 필수적으로 선행되는 중요한 과정이다. 널리 각광받고 있는 딥러닝 기법은 위성영상에서 복잡하고 세밀한 특징을 추출하여 영상 간 빠르고 정확한 유사도 판별에 사용될 수 있음에도 불구하고, 학습자료의 양과 질이 결과에 영향을 미치는 딥러닝 모델의 한계와 고해상도 위성영상 기반 학습자료 구축의 어려움에 따라 고해상도 위성영상의 정합에는 제한적으로 적용되어 왔다. 이에 본 연구는 영상정합에서 가장 많은 시간을 소요하는 정합쌍 추출 과정에서 딥러닝 기반 기법의 적용성을 확인하기 위하여, 편향성이 존재하는 고해상도 위성영상 데이터베이스로부터 딥러닝 영상매칭 학습자료를 구축하고 학습자료의 구성이 정합쌍 추출 정확도에 미치는 영향을 분석하였다. 학습자료는 12장의 다시기 및 다중센서 고해상도 위성영상에 대하여 격자 기반의 Scale Invariant Feature Transform(SIFT) 알고리즘을 이용하여 추출한 영상쌍에 참과 거짓의 레이블(label)을 할당한 정합쌍과 오정합쌍의 집합으로 구축되도록 하였다. 구축된 학습자료로부터 정합쌍 추출을 위해 제안된 Siamese convolutional neural network (SCNN) 모델은 동일한 두 개의 합성곱 신경망 구조에 한 쌍을 이루는 두 영상을 하나씩 통과시킴으로써 학습을 진행하고 추출된 특징의 비교를 통해 유사도를 판별한다. 본 연구를 통해 고해상도 위성영상 데이터 베이스로부터 취득된 자료를 딥러닝 학습자료로 활용 가능하며 이종센서 영상을 적절히 조합하여 영상매칭 과정의 효율을 높일 수 있음을 확인하였다. 다중센서 고해상도 위성영상을 활용한 딥러닝 기반 영상매칭 기법은 안정적인 성능을 바탕으로 기존 수작업 기반의 특징 추출 방법을 대체하고, 나아가 통합적인 딥러닝 기반 영상정합 프레임워크로 발전될 것으로 기대한다.

CCTV 영상의 이상행동 다중 분류를 위한 결합 인공지능 모델에 관한 연구 (A Study on Combine Artificial Intelligence Models for multi-classification for an Abnormal Behaviors in CCTV images)

  • 이홍래;김영태;서병석
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.498-500
    • /
    • 2022
  • CCTV는 위험 상황을 파악하고 신속히 대응함으로써, 인명과 자산을 안전하게 보호한다. 하지만, 점점 많아지는 CCTV 영상을 지속적으로 모니터링하기는 어렵다. 이런 이유로 CCTV 영상을 지속적으로 모니터링하면서 이상행동이 발생했을 때 알려주는 장치가 필요하다. 최근 영상데이터 분석에 인공지능 모델을 활용한 많은 연구가 이루어지고 있다. 본 연구는 CCTV 영상에서 관측할 수 있는 다양한 이상 행동을 분류하기 위해 영상데이터 사이의 공간적, 시간적 특성 정보를 동시에 학습한다. 학습에 이용되는 인공지능 모델로 End-to-End 방식의 3D-Convolution Neural Network(CNN)와 ResNet을 결합한 다중 분류 딥러닝 모델을 제안한다.

  • PDF

시화 갯벌식생범위의 시-공간적 변이 분석 (The Analysis of Temporal and Spatial Variation on the Vegetation Area of the Siwha Tidat Flat)

  • 정종철
    • 환경영향평가
    • /
    • 제20권3호
    • /
    • pp.349-356
    • /
    • 2011
  • This research is aim to analyze of changing landscape and according to phenological cycle from image information of coastal environment obtained by multi-media were analyzed by camera and satellite image. The digital camera and satellite image were used for tidal flat vegetation monitoring during the construction of Sihwa lake. The vegetation type and phenological cycle of Sihwa tidal flat have been changed with the Sihwa lake ecosystem. The environment changes of Sihwa tidal flat area and ecological change were analyzed by field work digital camera images and satellite images. The airborne, UAV and satellite images were classified with the changed elements of coastal ecological environment and tidal flat vegetation monitoring carried out the changed area and shape of vegetation distribution with time series images.

위성영상과 GIS를 이용한 과수재배 분포도 작성 기법에 관한 연구 (A Study on the Preparation Method of Fruit Cropping Distribution Map using Satellite Images and GIS)

  • 조명희;부기동;이정협;이광재
    • 한국지리정보학회지
    • /
    • 제3권4호
    • /
    • pp.73-86
    • /
    • 2000
  • 본 연구에서는 다시기 위성영상과 GIS(geographic information system)를 이용하여 과수재배분포도 작성에 있어 다양한 분류기법을 적용하여 보다 효율적인 기법도출에 그 목적을 두고 있다. 이를 위해 다시기별 Landsat TM영상과 현지 조사자료 및 기존 과수재배 면적 통계자료를 활용하여 각 분류기법에 대한 시기별 및 과수별 분포 특성과 비교 분석함으로서 과수재배분포도 작성에 있어 효과적인 분류기법을 도출하였다. 다시기 Landsat TM 영상을 이용한 과수재배 분포도작성을 위해서는 초가을 영상으로 MLC(maximum likelihood classification)기법을 적용하는 것이 가장 효율적인 것으로 나타났다. 또한 GIS를 통한 공간분석으로 행정별 과수재배의 면적을 효과적으로 추출함과 동시에 과수재배분포의 형태를 효율적으로 파악 할 수 있음을 규명하였다.

  • PDF

한반도 토지피복도 제작을 위한 다시기 Landsat ETM+ 영상의 정합 방법 (Multi-temporal Landsat ETM+ Mosaic Method for Generating Land Cover Map over the Korean Peninsula)

  • 김선화;강성진;이규성
    • 대한원격탐사학회지
    • /
    • 제26권2호
    • /
    • pp.87-98
    • /
    • 2010
  • 한반도 전역과 같은 상대적으로 넓은 지역의 정확한 분류를 위해서는 단일 영상 분류 후 영상정합 방식보다는 영상 정합 후 분류방법이 보다 정확하다. 또한 다중시기 정보는 분류에 매우 유용하게 사용될 수 있다. 본 연구에서는 한반도 전역을 대상으로 최적의 Landsat ETM+ 영상정합 방식을 제시하였다. 한반도 전역에 대해 2000년부터 2001년까지 획득된 총 65개의 Landsat ETM+영상을 이용하여 낙엽기, 이앙기, 개엽기 각각 정합 영상을 제작하였다. 이때 보다 정확한 영상정합을 위해 히스토그램 매칭, 중앙영상을 기준으로 한 1차 회귀식적용방법, Landsat 촬영 패스별로 적용한 1차 회귀식 적용방법, 총 세 가지 상대복사보정 방법을 적용하였다. 적용 결과, 패스별 상대복사보정한 결과가 그 보정 효과가 크면서, 높은 분류 정확도를 나타냈다. 또한 시기별 정합영상을 살펴보면, 개엽기의 정합영상이 타시기에 비해 상대적으로 인접한 영상 간 지표물의 변이가 다양하게 나타나는 것을 볼 수 있었다.

MODIS 다중시기 영상의 선형분광혼합화소분석을 이용한 한반도 토지피복분류도 구축 (Land Cover Classification of the Korean Peninsula Using Linear Spectral Mixture Analysis of MODIS Multi-temporal Data)

  • 정승규;박종화;김상욱
    • 대한원격탐사학회지
    • /
    • 제22권6호
    • /
    • pp.553-563
    • /
    • 2006
  • 본 연구의 목적은 MODIS 다중시기영상과 선형분광혼합화소분석(Linear Spectral Mixture Analysis : LSMA)을 이용하여 한반도의 토지피복도를 작성하는 것이다. 다양한 공간해상도와 광역적인 촬영스케일의 MODIS 영상에 LSMA를 이용하여 토지피복분류기 정확도의 향상과 한반도 생물계절적인 특성을 분석하고자 하였다. LSMA는 하나의 화소를 단일의 지표물로 가정하여 영상을 처리하는 기존의 기법과 달리 대상지의 토지피복 특성을 가장 잘 반영하는 순수한 물체의 화소값(Endmember)을 선택하여 자연환경요소들의 하나하나를 분리하는 기법이다. 본 연구에서 MODIS 다중시기 영상에 LSMA를 적용한 결과 남, 북한의 농경지 및 산림지역에 대한 서로 다른 생물계절적인 특성을 파악 할 수 있었으며, 이러한 결과 영상을 ISODATA 무감독분류기법을 통해서 대분류와 중분류하였다. 대분류에서는 79.94%의 전체 정확도를 보였으며, 농업지역은 85.45%, 산림지역은 88.12%로 다른 분류군들에 비해서 가장 높은 정확도를 보였다. 중분류에서는 산림지역과, 농업지역을 더욱 세분화하여 분류하였다. 전체정확도는 82.09%였으며, 활엽수림 86.96%, 논 85.38%로 분류군중 가장 높은 정확도를 나타냈다.

Search of submarine discharge locations with multi-temporal thermal infrared images and ground radar surveys

  • Onishi K.;Sairaiji M.;Rokugawa S.;Tokunaga T.;Sakuno Y.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.685-688
    • /
    • 2004
  • Fresh water discharge from the sea floor strongly affects a coastal ecology and the diffusion of contaminants. Much fresh water discharge has been found in the edge of Kurobe alluvial fan, in which annual rainfall is over 4000mm and there is abundant groundwater. However, it is difficult to find the groundwater discharge, thus the search of possible areas with some remote sensing tools is required. Because the temperature of the discharge point is relatively low compared with the surrounding sea water surfaces, there is a possibility to detect the area as an irregular zone of thermal infrared images. Two anomalous temperature zones, which have no surface streams from rivers, are detected by ASTER thermal-infrared images. One of them was verified as the groundwater discharge point by dives. In addition, the distribution of water table under the land side of the two areas is also detected as irregular zones by a ground-penetrating radar

  • PDF

Observation of Water Volume Changes of Rivers in Amazon Forests from Multi-temporal JERS-1 SAR Images

  • Takako, Sakurai-Amano;Takagi, Mikio
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.454-459
    • /
    • 2002
  • We have developed a new method to visualize river networks in tropical rain forests from JERS-1 SAR images. This method compresses river information in an original SAR image to a small image displaying wide rivers as dark objects in real size and narrower rivers as bright objects showing brightness level as an indicator of the discharge. We applied this method to 476 images of Amazon forests, 13 observations for path 415 data and 11 observations for path 416 data between 1993 and 1997. We confirmed that a change observed in a preliminary experiment was certainly a part of seasonal changes. The changes roughly correspond to the monthly precipitation changes. Through a simple digital analysis although qualitative, we also detected subtle but consistent regional differences among minor tributaries that belong to a major tributary basin.

  • PDF

Implementation of an Enhanced Change Detection System based on OGC Grid Coverage Specification

  • Lim, Young-Jae;Kim, Hong-Gab;Kim, Kyung-Ok
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1099-1101
    • /
    • 2003
  • Change detection technology, which discovers the change information on the surface of the earth by comparing and analyzing multi-temporal satellite images, can be usefully applied to the various fields, such as environmental inspection, urban planning, forest policy, updating of geographical information and the military usage. In this paper, we introduce a change detection system that can extract and analyze change elements from high-resolution satellite imagery as well as low- or middle-resolution satellite imagery. The developed system provides not only 7 pixelbased methods that can be used to detect change from low- or middle-resolution satellite images but also a float window concept that can be used in manual change detection from highresolution satellite images. This system enables fast access to the very large image, because it is constituted by OGC grid coverage components. Also new change detection algorithms can be easily added into this system if once they are made into grid coverage components.

  • PDF

Landsat 8/9 및 Sentinel-2 A/B를 이용한 울진 산불 피해 탐지: 다양한 지수를 기반으로 다시기 분석 (Forest Burned Area Detection Using Landsat 8/9 and Sentinel-2 A/B Imagery with Various Indices: A Case Study of Uljin)

  • 김병철;이경일;박선영;임정호
    • 대한원격탐사학회지
    • /
    • 제38권5_2호
    • /
    • pp.765-779
    • /
    • 2022
  • 본 연구에서는 Landsat 8/9 OLI와 Sentinel-2 MSI 위성 영상을 활용한 다시기 영상 데이터를 이용하여 다양한 분광 지수를 기반으로 국내 산불 피해 면적 탐지 정확도를 분석하였다. 2022년 3월 경상북도 울진에서 발생하였던 산불을 대상으로 Difference Normalized Burn Ratio (dNBR), Relative Difference Normalized Burn Ratio (RdNBR), Burned Area Index (BAI) 등의 지수를 활용하여 산불피해 면적 탐지에 활용하였다. 비교적 높은 공간 해상도를 가진 Sentinel-2 영상을 기반으로 참조 자료를 제작하였다. 총 6개의 지수 산출물을 기반으로 Sentinel-2, Landsat 8/9으로 총 4개 위성에 대해 산불 피해 정확도를 각각 분석하였다. Landsat 8/9과 Sentinel-2는 각각 16일, 10일 주기로 영상을 제공하고 있지만 구름으로 인해 영상 취득에 어려움이 많은 편이며, 우리나라는 4월부터 식생의 생장이 시작되어 봄철 산불 피해 분석 시 산불발생 전후 영상을 활용하는 경우 식생의 생장으로 인한 변화가 커서 정확도 높은 탐지에 어려움이 있다. 따라서, 본 연구는 2월에서 5월까지의 다시기 Landsat 8/9과 Sentinel-2 영상 중 같은 날짜를 기반의 영상을 서로 사용하여 시간해상도의 한계를 극복하고 탐지 정확도가 상대적으로 높은 지수를 비교 분석했다. 본 연구 결과는 한국형 산불피해 탐지 지수/모델 개발을 위한 입력 자료 등으로 활용되어 최적화된 산불 지수를 기반으로 정확도 높은 산불 피해 면적 탐지에 활용될 수 있을 것으로 기대된다.