• Title/Summary/Keyword: multi-temporal images

Search Result 214, Processing Time 0.034 seconds

Two-stage Deep Learning Model with LSTM-based Autoencoder and CNN for Crop Classification Using Multi-temporal Remote Sensing Images

  • Kwak, Geun-Ho;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.719-731
    • /
    • 2021
  • This study proposes a two-stage hybrid classification model for crop classification using multi-temporal remote sensing images; the model combines feature embedding by using an autoencoder (AE) with a convolutional neural network (CNN) classifier to fully utilize features including informative temporal and spatial signatures. Long short-term memory (LSTM)-based AE (LAE) is fine-tuned using class label information to extract latent features that contain less noise and useful temporal signatures. The CNN classifier is then applied to effectively account for the spatial characteristics of the extracted latent features. A crop classification experiment with multi-temporal unmanned aerial vehicle images is conducted to illustrate the potential application of the proposed hybrid model. The classification performance of the proposed model is compared with various combinations of conventional deep learning models (CNN, LSTM, and convolutional LSTM) and different inputs (original multi-temporal images and features from stacked AE). From the crop classification experiment, the best classification accuracy was achieved by the proposed model that utilized the latent features by fine-tuned LAE as input for the CNN classifier. The latent features that contain useful temporal signatures and are less noisy could increase the class separability between crops with similar spectral signatures, thereby leading to superior classification accuracy. The experimental results demonstrate the importance of effective feature extraction and the potential of the proposed classification model for crop classification using multi-temporal remote sensing images.

Effect of Correcting Radiometric Inconsistency between Input Images on Spatio-temporal Fusion of Multi-sensor High-resolution Satellite Images (입력 영상의 방사학적 불일치 보정이 다중 센서 고해상도 위성영상의 시공간 융합에 미치는 영향)

  • Park, Soyeon;Na, Sang-il;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.999-1011
    • /
    • 2021
  • In spatio-temporal fusion aiming at predicting images with both high spatial and temporal resolutionsfrom multi-sensor images, the radiometric inconsistency between input multi-sensor images may affect prediction performance. This study investigates the effect of radiometric correction, which compensate different spectral responses of multi-sensor satellite images, on the spatio-temporal fusion results. The effect of relative radiometric correction of input images was quantitatively analyzed through the case studies using Sentinel-2, PlanetScope, and RapidEye images obtained from two croplands. Prediction performance was improved when radiometrically corrected multi-sensor images were used asinput. In particular, the improvement in prediction performance wassubstantial when the correlation between input images was relatively low. Prediction performance could be improved by transforming multi-sensor images with different spectral responses into images with similar spectral responses and high correlation. These results indicate that radiometric correction is required to improve prediction performance in spatio-temporal fusion of multi-sensor satellite images with low correlation.

Atmospheric Correction Problems with Multi-Temporal High Spatial Resolution Images from Different Satellite Sensors

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.321-330
    • /
    • 2015
  • Atmospheric correction is an essential part in time-series analysis on biophysical parameters of surface features. In this study, we tried to examine possible problems in atmospheric correction of multitemporal High Spatial Resolution (HSR) images obtained from two different sensor systems. Three KOMPSAT-2 and two IKONOS-2 multispectral images were used. Three atmospheric correction methods were applied to derive surface reflectance: (1) Radiative Transfer (RT) - based absolute atmospheric correction method, (2) the Dark Object Subtraction (DOS) method, and (3) the Cosine Of the Uun zeniTh angle (COST) method. Atmospheric correction results were evaluated by comparing spectral reflectance values extracted from invariant targets and vegetation cover types. In overall, multi-temporal reflectance from five images obtained from January to December did not show consistent pattern in invariant targets and did not follow a typical profile of vegetation growth in forests and rice field. The multi-temporal reflectance values were different by sensor type and atmospheric correction methods. The inconsistent atmospheric correction results from these multi-temporal HSR images may be explained by several factors including unstable radiometric calibration coefficients for each sensor and wide range of sun and sensor geometry with the off-nadir viewing HSR images.

A Study on the Change Detection of Multi-temporal Data - A Case Study on the Urban Fringe in Daegu Metropolitan City - (대도시 주변지역의 토지이용변화 - 대구광역시를 중심으로 -)

  • 박인환;장갑수
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • The purpose of this article is to examine land use change in the fringe area of a metropolitan city through multi-temporal data analysis. Change detection has been regarded as one of the most important applications for utilization of remotely sensed imageries. Conventionally, two images were used for change detection, and Arithmetic calculators were generally used on the process. Meanwhile, multi-temporal change detection for a large number of images has been carried out. In this paper, a digital land-use map and three Landsat TM data were utilized for the multi-temporal change detection Each urban area map was extracted as a base map on the process of multi-temporal change detection. Each urban area map was converted to bit image by using boolean logic. Various urban change types could be obtained by stacking the urban area maps derived from the multi-temporal data using Geographic Information System(GIS). Urban change type map was created by using the process of piling up the bit images. Then the urban change type map was compared with each land cover map for the change detection. Dalseo-gu of Daegu city and Hwawon-eup of Dalsung-gun, the fringe area of Daegu Metropolitan city, were selected for the test area of this multi-temporal change detection method. The districts are adjacent to each other. Dalseo-gu has been developed for 30 yeais and so a large area of paddy land has been changed into a built-up area. Hwawon-eup, near by Dalseo-gu, has been influenced by the urbanization of Dalseo-gu. From 1972 to 1999, 3,507.9ha of agricultural area has been changed into other land uses, while 72.7ha of forest area has been altered. This agricultural area was designated as a 'Semi-agricultural area'by the National landuse Management Law. And it was easy for the preserved area to be changed into a built-up area once it would be included as urban area. Finally, the method of treatment and management of the preserved area needs to be changed to prevent the destruction of paddy land by urban sprawl on the urban fringe.

Change Detection of Land-cover from Multi-temporal KOMPSAT-1 EOC Imageries

  • Ha, Sung-Ryong;Ahn, Byung-Woon;Park, Sang-Young
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.1
    • /
    • pp.13-23
    • /
    • 2002
  • A radiometric correction method is developed to apply multi-temporal KOMPSAT-1 EOC satellite images for the detection of land-cover changes b\ulcorner recognizing changes in reflection pattern. Radiometric correction was carried out to eliminate the atmospheric effects that could interfere with the image properly of the satellite data acquired at different multi-times. Four invariant features of water, sand, paved road, and roofs of building are selected and a linear regression relationship among the control set images is used as a correction scheme. It is found that the utilization of panchromatic multi-temporal imagery requires the radiometric scene standardization process to correct radiometric errors that include atmospheric effects and digital image processing errors. Land-cover with specific change pattern such as paddy field is extracted by seasonal change recognition process.

Landcover classification by coherence analysis from multi-temporal SAR images (다중시기 SAR 영상자료 긴밀도 분석을 통한 토지피복 분류)

  • Yoon, Bo-Yeol;Kim, Youn-Soo
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.132-137
    • /
    • 2009
  • This study has regard to classification by using multi-temporal SAR data. Multi-temporal JERS-1 SAR images are used for extract the land cover information and possibility. So far, land cover information extracted by high resolution aerial photo, satellite images, and field survey. This study developed on multi-temporal land cover status monitoring and coherence information mapping can be processing by L band SAR image. From July, 1997 to October, 1998 JERS SAR images (9 scenes) coherence values are analyzed and then extracted land cover information factors, so on. This technique which forms the basis of what is called SAR Interferometry or InSAR for short has also been employed in spaceborne systems. In such systems the separation of the antennas, called the baseline is obtained by utilizing a single antenna in a repeat pass.

  • PDF

LAND COVER CLASSIFICATION BY USING SAR COHERENCE IMAGES

  • Yoon, Bo-Yeol;Kim, Youn-Soo
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.76-79
    • /
    • 2008
  • This study presents the use of multi-temporal JERS-1 SAR images to the land cover classification. So far, land cover classified by high resolution aerial photo and field survey and so on. The study site was located in Non-san area. This study developed on multi-temporal land cover status monitoring and coherence information mapping can be processing by L band SAR image. From July, 1997 to October, 1998 JERS SAR images (9 scenes) coherence values are analyzed and then classified land cover. This technique which forms the basis of what is called SAR Interferometry or InSAR for short has also been employed in spaceborne systems. In such systems the separation of the antennas, called the baseline is obtained by utilizing a single antenna in a repeat pass

  • PDF

Fine Registration between Very High Resolution Satellite Images Using Registration Noise Distribution (등록오차 분포특성을 이용한 고해상도 위성영상 간 정밀 등록)

  • Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.3
    • /
    • pp.125-132
    • /
    • 2017
  • Even after applying an image registration, Very High Resolution (VHR) multi-temporal images acquired from different optical satellite sensors such as IKONOS, QuickBird, and Kompsat-2 show a local misalignment due to dissimilarities in sensor properties and acquisition conditions. As the local misalignment, also referred to as Registration Noise (RN), is likely to have a negative impact on multi-temporal information extraction, detecting and reducing the RN can improve the multi-temporal image processing performance. In this paper, an approach to fine registration between VHR multi-temporal images by considering local distribution of RN is proposed. Since the dominant RN mainly exists along boundaries of objects, we use edge information in high frequency regions to identify it. In order to validate the proposed approach, datasets are built from VHR multi-temporal images acquired by optical satellite sensors. Both qualitative and quantitative assessments confirm the effectiveness of the proposed RN-based fine registration approach compared to the manual registration.

The Applicability for Earth Surface Monitoring Based on 3D Wavelet Transform Using the Multi-temporal Satellite Imagery (다중시기 위성영상을 이용한 3차원 웨이블릿 변환의 지구모니터링 응용가능성 연구)

  • Yoo, Hee-Young;Lee, Ki-Won
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.560-574
    • /
    • 2011
  • Satellite images that have been obtained periodically and continuously are very effective data to monitor the changes of Earth's surface. Traditionally, the studies on change detection using satellite images have mainly focused on comparison between two results after analyzing two images respectively. However, the interests in researches to catch smooth trends and short duration events from continual multi-temporal images have been increased recently. In this study, we introduce and test an approach based on 3D wavelet transform to analyze the multi-temporal satellite images. 3D wavelet transform can reduce the dimensions of data conserving main trends. Also, it is possible to extract important patterns and to analyze spatial and temporal relations with neighboring pixels using 3D wavelet transform. As a result, 3D wavelet transform is useful to capture the long term trends and short-term events rapidly. In addition, we can expect to get new information through sub-bands of 3D wavelet transform which provide different information by decomposed direction.

EXTRACTION OF LAND COVER INFORMATION BY USING SAR COHERENCE IMAGES

  • Yoon, Bo-Yeol;Kim, Youn-Soo
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.475-478
    • /
    • 2007
  • This study presents the use of multi-temporal JERS-1 SAR images to extract the land cover information and possibility. So far, land cover information extracted by high resolution aerial photo and field survey. The study site was located in Non-san area. This study developed on multi-temporal land cover status monitoring and coherence information mapping can be processing by L band SAR image. From July, 1997 to October, 1998 JERS SAR images (9 scenes) coherence values are analyzed and then extracted land cover information factors, so on. This technique which forms the basis of what is called SAR Interferometry or InSAR for short has also been employed in spaceborne systems. In such systems the separation of the antennas, called the baseline is obtained by utilizing a single antenna in a repeat pass

  • PDF