• Title/Summary/Keyword: multi-temporal

Search Result 671, Processing Time 0.024 seconds

Monitoring of Forest Burnt Area using Multi-temporal Landsat TM and ETM+ Data

  • Lee, Seung-Ho;Kim, Cheol-Min;Cho, Hyun-Kook
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.1
    • /
    • pp.13-21
    • /
    • 2004
  • The usefulness of the multi-temporal satellite image to monitoring the vegetation recovery process after forest fire was tested. Using multi-temporal Landsat TM and ETM+data, NDVI and NBR changes over times were analyzed. Both NDVI and NBR values were rapidly decreased after the fire and gradually increased for all forest type and damage class. However, NBR curve showed much clearer tendency of vegetation recovery than NDVI. Both indices yielded the lowest values in severely damaged red pine forest. The results show the vegetation recovery process after forest fire can detect and monitor using multi-temporal Landsat image. NBR was proved to be useful to examine the recovering and development process of the vegetation after fire. In the not damaged forest, however the NDVI shows more potential capability to discriminate the forest types than NBR..

Spatio-temporal Sensor Data Processing Techniques

  • Kim, Jeong-Joon
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1259-1276
    • /
    • 2017
  • As technologies related to sensor network are currently emerging and the use of GeoSensor is increasing along with the development of Internet of Things (IoT) technology, spatial query processing systems to efficiently process spatial sensor data are being actively studied. However, existing spatial query processing systems do not support a spatial-temporal data type and a spatial-temporal operator for processing spatialtemporal sensor data. Therefore, they are inadequate for processing spatial-temporal sensor data like GeoSensor. Accordingly, this paper developed a spatial-temporal query processing system, for efficient spatial-temporal query processing of spatial-temporal sensor data in a sensor network. Lastly, this paper verified the utility of System through a scenario, and proved that this system's performance is better than existing systems through performance assessment of performance time and memory usage.

Temporal Fusion Transformers and Deep Learning Methods for Multi-Horizon Time Series Forecasting (Temporal Fusion Transformers와 심층 학습 방법을 사용한 다층 수평 시계열 데이터 분석)

  • Kim, InKyung;Kim, DaeHee;Lee, Jaekoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.2
    • /
    • pp.81-86
    • /
    • 2022
  • Given that time series are used in various fields, such as finance, IoT, and manufacturing, data analytical methods for accurate time-series forecasting can serve to increase operational efficiency. Among time-series analysis methods, multi-horizon forecasting provides a better understanding of data because it can extract meaningful statistics and other characteristics of the entire time-series. Furthermore, time-series data with exogenous information can be accurately predicted by using multi-horizon forecasting methods. However, traditional deep learning-based models for time-series do not account for the heterogeneity of inputs. We proposed an improved time-series predicting method, called the temporal fusion transformer method, which combines multi-horizon forecasting with interpretable insights into temporal dynamics. Various real-world data such as stock prices, fine dust concentrates and electricity consumption were considered in experiments. Experimental results showed that our temporal fusion transformer method has better time-series forecasting performance than existing models.

A Real-Time Integrated Hierarchical Temporal Memory Network for the Real-Time Continuous Multi-Interval Prediction of Data Streams

  • Kang, Hyun-Syug
    • Journal of Information Processing Systems
    • /
    • v.11 no.1
    • /
    • pp.39-56
    • /
    • 2015
  • Continuous multi-interval prediction (CMIP) is used to continuously predict the trend of a data stream based on various intervals simultaneously. The continuous integrated hierarchical temporal memory (CIHTM) network performs well in CMIP. However, it is not suitable for CMIP in real-time mode, especially when the number of prediction intervals is increased. In this paper, we propose a real-time integrated hierarchical temporal memory (RIHTM) network by introducing a new type of node, which is called a Zeta1FirstSpecializedQueueNode (ZFSQNode), for the real-time continuous multi-interval prediction (RCMIP) of data streams. The ZFSQNode is constructed by using a specialized circular queue (sQUEUE) together with the modules of original hierarchical temporal memory (HTM) nodes. By using a simple structure and the easy operation characteristics of the sQUEUE, entire prediction operations are integrated in the ZFSQNode. In particular, we employed only one ZFSQNode in each level of the RIHTM network during the prediction stage to generate different intervals of prediction results. The RIHTM network efficiently reduces the response time. Our performance evaluation showed that the RIHTM was satisfied to continuously predict the trend of data streams with multi-intervals in the real-time mode.

Urban Spatial Analysis using Multi-temporal KOMPSAT-1 EOC Imagery

  • Kim Youn-Soo;Jeun Gab-Ho;Lee Kwang-Jae;Kim Byung-Kyo
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.515-517
    • /
    • 2004
  • Although sustainable development of a city should in theory be based on updated spatial information like land cover/use changes, in practice there are no effective tools to get such information. However the development of satellite and sensor technologies has increased the supply of high resolution satellite data, allowing cost-effective, multi-temporal monitoring. Especially KOMPSAT-1(KOrea Multi-Purpose SATellite) acquired a large number of images of the whole Korean peninsula and covering some large cities a number of times. In this study land-use patterns and trends of Daejeon from the year 2000 to the year 2003 will be considered using land use maps which are generated by manual interpretation of multi-temporal KOMPSAT EOC imagery and to show the possibility of using high resolution satellite remote sensing data for urban analysis.

  • PDF

An Efficient Event Detection Algorithm using Spatio-Temporal Correlation in Surveillance Reconnaissance Sensor Networks (감시정찰 센서네트워크에서 시공간 연관성를 이용한 효율적인 이벤트 탐지 기법)

  • Yeo, Myung-Ho;Kim, Yong-Hyun;Kim, Hun-Kyu;Lee, Noh-Bok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.913-919
    • /
    • 2011
  • In this paper, we present a new efficient event detection algorithm for sensor networks with faults. We focus on multi-attributed events, which are sets of data points that correspond to interesting or unusual patterns in the underlying phenomenon that the network monitors. Conventional algorithms cannot detect some events because they treat only their own sensor readings which can be affected easily by environmental or physical problem. Our approach exploits spatio-temporal correlation of sensor readings. Sensor nodes exchange a fault-tolerant code encoded their own readings with neighbors, organize virtual sensor readings which have spatio-temporal correlation, and determine a result for multi-attributed events from them. In the result, our proposed algorithm provides improvement of detecting multi-attributed events and reduces the number of false-negatives due to negative environmental effects.

Landcover classification by coherence analysis from multi-temporal SAR images (다중시기 SAR 영상자료 긴밀도 분석을 통한 토지피복 분류)

  • Yoon, Bo-Yeol;Kim, Youn-Soo
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.132-137
    • /
    • 2009
  • This study has regard to classification by using multi-temporal SAR data. Multi-temporal JERS-1 SAR images are used for extract the land cover information and possibility. So far, land cover information extracted by high resolution aerial photo, satellite images, and field survey. This study developed on multi-temporal land cover status monitoring and coherence information mapping can be processing by L band SAR image. From July, 1997 to October, 1998 JERS SAR images (9 scenes) coherence values are analyzed and then extracted land cover information factors, so on. This technique which forms the basis of what is called SAR Interferometry or InSAR for short has also been employed in spaceborne systems. In such systems the separation of the antennas, called the baseline is obtained by utilizing a single antenna in a repeat pass.

  • PDF

L-band SAR Monitoring of Rice Crop Growth

  • Lee, Kyu-Sung;Hong, Chang-Hee
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.479-484
    • /
    • 1999
  • Rice crop has relatively short growing season during the summer in Korea and, therefore, it is often difficult to acquire cloud-free imagery on time. This study was attempt to define the temporal characteristics of radar backscattering observed from satellite L-band SAR data on different growing stages of rice crop. Six scenes of multi-temporal JERS SAR data were obtained from the transplanting season to the harvesting month of October. Six layers of multi-temporal SAR data were registered on a common geographic coordinate system. Using topographic maps, field collected data, and Landsat TM data, several sample rice fields were delineated from the imagery and their relative radar backscatters were calculated by using a set of reference targets. The temporal pattern of radar backscattering was very distinctive by the growing stage of rice crop. It was also separable between two types of rice fields having different cultivation practices. Considering the temporal characteristics of radar backscattering observed from the study, it is obvious that a certain date of the growing season can be more effective to delineate the exact area of the cultivated rice crop field.

  • PDF

The multi-temporal characteristics of spectral vegetation indices for agricultural land use on RapidEye satellite imagery (농촌지역 토지이용유형별 RapidEye 위성영상의 분광식생지수 시계열 특성)

  • Kim, Hyun-Ok;Yeom, Jong-Min;Kim, Youn-Soo
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.149-155
    • /
    • 2011
  • A fast-changing agriculture environment induced by global warming and abnormal climate conditions demands scientific systems for monitoring and predicting crop conditions as well as crop yields at national level. Remote sensing opens up a new application field for precision agriculture with the help of commercial use of high resolution optical as well as radar satellite data. In this study, we investigated the multi-temporal spectral characteristics relative to different agricultural land use types in Korea using RapidEye satellite imagery. There were explicit differences between vegetation and non-vegetation land use types. Also, within the vegetation group spectral vegetation indices represented differences in temporal changing trends as to plant species and paddy types.

Spatio-temporal Load Forecasting Considering Aggregation Features of Electricity Cells and Uncertainties in Input Variables

  • Zhao, Teng;Zhang, Yan;Chen, Haibo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.38-50
    • /
    • 2018
  • Spatio-temporal load forecasting (STLF) is a foundation for building the prediction-based power map, which could be a useful tool for the visualization and tendency assessment of urban energy application. Constructing one point-forecasting model for each electricity cell in the geographic space is possible; however, it is unadvisable and insufficient, considering the aggregation features of electricity cells and uncertainties in input variables. This paper presents a new STLF method, with a data-driven framework consisting of 3 subroutines: multi-level clustering of cells considering their aggregation features, load regression for each category of cells based on SLS-SVRNs (sparse least squares support vector regression networks), and interval forecasting of spatio-temporal load with sampled blind number. Take some area in Pudong, Shanghai as the region of study. Results of multi-level clustering show that electricity cells in the same category are clustered in geographic space to some extent, which reveals the spatial aggregation feature of cells. For cellular load regression, a comparison has been made with 3 other forecasting methods, indicating the higher accuracy of the proposed method in point-forecasting of spatio-temporal load. Furthermore, results of interval load forecasting demonstrate that the proposed prediction-interval construction method can effectively convey the uncertainties in input variables.